{"title":"Existence of weak solutions to a Cahn–Hilliard–Biot system","authors":"Helmut Abels, Harald Garcke, Jonas Haselböck","doi":"10.1016/j.nonrwa.2024.104194","DOIUrl":null,"url":null,"abstract":"<div><p>We prove existence of weak solutions to a diffuse interface model describing the flow of a fluid through a deformable porous medium consisting of two phases. The system non-linearly couples Biot’s equations for poroelasticity, including phase-field dependent material properties, with the Cahn–Hilliard equation to model the evolution of the solid, and is further augmented by a visco-elastic regularization of Kelvin–Voigt type. To obtain this result, we approximate the problem in two steps, where first a semi-Galerkin ansatz is employed to show existence of weak solutions to regularized systems, for which later on compactness arguments allow limit passage. Notably, we also establish a maximal regularity theory for linear visco-elastic problems.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"81 ","pages":"Article 104194"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1468121824001330/pdfft?md5=19f83d3860f7c26cb3847128235f7d3f&pid=1-s2.0-S1468121824001330-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001330","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We prove existence of weak solutions to a diffuse interface model describing the flow of a fluid through a deformable porous medium consisting of two phases. The system non-linearly couples Biot’s equations for poroelasticity, including phase-field dependent material properties, with the Cahn–Hilliard equation to model the evolution of the solid, and is further augmented by a visco-elastic regularization of Kelvin–Voigt type. To obtain this result, we approximate the problem in two steps, where first a semi-Galerkin ansatz is employed to show existence of weak solutions to regularized systems, for which later on compactness arguments allow limit passage. Notably, we also establish a maximal regularity theory for linear visco-elastic problems.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.