Ferritinophagy: Molecular mechanisms and role in disease

IF 2.9 4区 医学 Q2 PATHOLOGY Pathology, research and practice Pub Date : 2024-08-22 DOI:10.1016/j.prp.2024.155553
{"title":"Ferritinophagy: Molecular mechanisms and role in disease","authors":"","doi":"10.1016/j.prp.2024.155553","DOIUrl":null,"url":null,"abstract":"<div><p>Ferritinophagy is a regulatory pathway of iron homeostasis. It is a process in which nuclear receptor coactivator 4 (NCOA4) carries ferritin to autophagolysosomes for degradation. After ferritin is degraded by autophagy, iron ions are released, which promotes the labile iron pool (LIP) to drive the Fenton reaction to cause lipid peroxidation. Furthermore, ferroptosis promoted by the accumulation of lipid reactive oxygen species (ROS) induced by ferritinophagy can cause a variety of systemic diseases. In clinical studies, targeting the genes regulating ferritinophagy can prevent and treat such diseases. This article describes the key regulatory factors of ferritinophagy and the mechanism of ferritinophagy involved in ferroptosis. It also reviews the damage of ferritinophagy to the body, providing a theoretical basis for further finding clinical treatment methods.</p></div>","PeriodicalId":19916,"journal":{"name":"Pathology, research and practice","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathology, research and practice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0344033824004643","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ferritinophagy is a regulatory pathway of iron homeostasis. It is a process in which nuclear receptor coactivator 4 (NCOA4) carries ferritin to autophagolysosomes for degradation. After ferritin is degraded by autophagy, iron ions are released, which promotes the labile iron pool (LIP) to drive the Fenton reaction to cause lipid peroxidation. Furthermore, ferroptosis promoted by the accumulation of lipid reactive oxygen species (ROS) induced by ferritinophagy can cause a variety of systemic diseases. In clinical studies, targeting the genes regulating ferritinophagy can prevent and treat such diseases. This article describes the key regulatory factors of ferritinophagy and the mechanism of ferritinophagy involved in ferroptosis. It also reviews the damage of ferritinophagy to the body, providing a theoretical basis for further finding clinical treatment methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
噬铁蛋白:分子机制和在疾病中的作用
铁蛋白吞噬是铁平衡的一种调节途径。在这一过程中,核受体辅激活子 4(NCOA4)将铁蛋白带到自噬溶酶体中进行降解。铁蛋白被自噬降解后,铁离子被释放出来,从而促进易变铁池(LIP)驱动芬顿反应,导致脂质过氧化。此外,由铁蛋白吞噬诱导的脂质活性氧(ROS)积累所促进的铁变态反应可导致多种系统性疾病。在临床研究中,靶向调控噬铁蛋白的基因可以预防和治疗这类疾病。本文介绍了噬铁蛋白的关键调控因子和噬铁蛋白参与铁蛋白沉积的机制。文章还回顾了噬铁蛋白对机体的损害,为进一步寻找临床治疗方法提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
3.60%
发文量
405
审稿时长
24 days
期刊介绍: Pathology, Research and Practice provides accessible coverage of the most recent developments across the entire field of pathology: Reviews focus on recent progress in pathology, while Comments look at interesting current problems and at hypotheses for future developments in pathology. Original Papers present novel findings on all aspects of general, anatomic and molecular pathology. Rapid Communications inform readers on preliminary findings that may be relevant for further studies and need to be communicated quickly. Teaching Cases look at new aspects or special diagnostic problems of diseases and at case reports relevant for the pathologist''s practice.
期刊最新文献
Clinical utility of plasma cell-free DNA (cfDNA) in diffuse gliomas for the detection of IDH1 R132H mutation Long journey on the role of long non-coding RNA (lncRNA) in acute kidney injury (AKI) Editorial Board Molecular targets in SARS-CoV-2 infection: An update on repurposed drug candidates TNFRSF10D expression as a potential biomarker for cisplatin-induced damage and ovarian tumor relapse prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1