Exploring the disintegration mechanism of dissolved natural plant products tablets based on pore structure control

IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL Advanced Powder Technology Pub Date : 2024-08-23 DOI:10.1016/j.apt.2024.104586
{"title":"Exploring the disintegration mechanism of dissolved natural plant products tablets based on pore structure control","authors":"","doi":"10.1016/j.apt.2024.104586","DOIUrl":null,"url":null,"abstract":"<div><p>Porosity variations have an impact on the disintegration behavior of tablets whereas the influence on the disintegration characteristics of natural plant product (NPP) tablets has not been extensively studied. Revealing the pore structure of NPP tablets provides a new and important clue to elucidate the phenomenal behavior and underlying mechanisms of tablet disintegration. In this study, the effect of porosity variation on disintegration of NPP tablets was evaluated for the first time. The disintegration performance of NPP tablets was evaluated using tablet attributes, disintegration kinetics, and the wicking process. Mercury intrusion porosimetry (MIP) and X-ray computed microtomography (XμCT) were used to characterize the microstructure of the tablets. <em>Curcuma Longa</em> Linn. extractions were compacted into tablets with different solid fractions. Tablet qualities changed significantly with increasing porosity. An increase in the wicking rate with porosity changed by visualizing the wicking process. The disintegration kinetics of tablets showed a sensitive variation after an increase in porosity. The pore structure of tablets including parameters such as pore size distribution, tortuosity, and connectivity were identified as direct drivers of wicking and disintegration. The current study provides new insights into the disintegration mechanism of dissolved NPP tablets by exploring the evolution of the pore microstructure.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883124002620","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Porosity variations have an impact on the disintegration behavior of tablets whereas the influence on the disintegration characteristics of natural plant product (NPP) tablets has not been extensively studied. Revealing the pore structure of NPP tablets provides a new and important clue to elucidate the phenomenal behavior and underlying mechanisms of tablet disintegration. In this study, the effect of porosity variation on disintegration of NPP tablets was evaluated for the first time. The disintegration performance of NPP tablets was evaluated using tablet attributes, disintegration kinetics, and the wicking process. Mercury intrusion porosimetry (MIP) and X-ray computed microtomography (XμCT) were used to characterize the microstructure of the tablets. Curcuma Longa Linn. extractions were compacted into tablets with different solid fractions. Tablet qualities changed significantly with increasing porosity. An increase in the wicking rate with porosity changed by visualizing the wicking process. The disintegration kinetics of tablets showed a sensitive variation after an increase in porosity. The pore structure of tablets including parameters such as pore size distribution, tortuosity, and connectivity were identified as direct drivers of wicking and disintegration. The current study provides new insights into the disintegration mechanism of dissolved NPP tablets by exploring the evolution of the pore microstructure.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于孔隙结构控制的天然植物溶解片剂崩解机理探索
孔隙率变化对片剂的崩解行为有影响,但对天然植物产品(NPP)片剂崩解特性的影响还没有广泛的研究。揭示 NPP 片剂的孔隙结构为阐明片剂崩解的现象行为和内在机制提供了新的重要线索。本研究首次评估了孔隙率变化对 NPP 片剂崩解的影响。通过片剂属性、崩解动力学和吸水过程对 NPP 片剂的崩解性能进行了评估。汞侵入孔测定法(MIP)和 X 射线计算机显微层析技术(XμCT)用于表征片剂的微观结构。将莪术提取物压制成不同固体组分的片剂。随着孔隙率的增加,片剂的质量发生了明显变化。通过目测吸水过程,吸水率随孔隙率的增加而变化。片剂的崩解动力学在孔隙率增加后出现了敏感变化。片剂的孔隙结构(包括孔径分布、迂回度和连通性等参数)被确定为舔噬和崩解的直接驱动因素。本研究通过探索孔隙微观结构的演变,对溶解的 NPP 片剂的崩解机制提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Powder Technology
Advanced Powder Technology 工程技术-工程:化工
CiteScore
9.50
自引率
7.70%
发文量
424
审稿时长
55 days
期刊介绍: The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide. The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them. Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)
期刊最新文献
Optimization of conventional-zeolite-synthesis from waste pumice for water adsorption Validation of DEM simulations for a drum-type agitation mill using particle velocities measured by 3D PTV Inside Front Cover (Aims & Scope, Editors) Full title (Editorial Board Members) Reactive molecular dynamics analysis of alumina nano-powders under warm compaction process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1