Reciprocity in laser ultrasound revisited: Is wavefield characterization by scanning laser excitation strictly reciprocal to that by scanning laser detection?
{"title":"Reciprocity in laser ultrasound revisited: Is wavefield characterization by scanning laser excitation strictly reciprocal to that by scanning laser detection?","authors":"Bernd Köhler , Yuui Amano , Frank Schubert , Kazuyuki Nakahata","doi":"10.1016/j.ndteint.2024.103204","DOIUrl":null,"url":null,"abstract":"<div><p>The often-assumed measurement reciprocity between scanning laser detection and scanning laser excitation is disproved by a simple experiment. Nevertheless, a deeper study based on the reciprocity relation reveals correct reciprocal measurement set-ups for both the probe-excitation/laser-detection and the laser-excitation/probe-detection case. Similarly, the all-laser measurement, that is thermoelastic laser excitation with laser vibrometer detection, is not in general reciprocal with respect to the exchange of excitation and detection positions. Again, a substitute for the laser doppler vibrometer out-of-plane displacement measurement was found which ensures measurement reciprocity together with laser excitation. The apparent confusion in literature about strict validity/non-validity of measurement reciprocity is mitigated by classifying the measurement situations systematically.</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"147 ","pages":"Article 103204"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0963869524001695/pdfft?md5=e7cf83d54ed332d68cc54663e5e43c79&pid=1-s2.0-S0963869524001695-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524001695","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
The often-assumed measurement reciprocity between scanning laser detection and scanning laser excitation is disproved by a simple experiment. Nevertheless, a deeper study based on the reciprocity relation reveals correct reciprocal measurement set-ups for both the probe-excitation/laser-detection and the laser-excitation/probe-detection case. Similarly, the all-laser measurement, that is thermoelastic laser excitation with laser vibrometer detection, is not in general reciprocal with respect to the exchange of excitation and detection positions. Again, a substitute for the laser doppler vibrometer out-of-plane displacement measurement was found which ensures measurement reciprocity together with laser excitation. The apparent confusion in literature about strict validity/non-validity of measurement reciprocity is mitigated by classifying the measurement situations systematically.
期刊介绍:
NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.