{"title":"A thermodynamic approach to energy requirements for CO2 capture and a comparison between the minimum energy for liquid and solid sorbent processes","authors":"Samuel J. Layding , Hugo S. Caram","doi":"10.1016/j.ijggc.2024.104227","DOIUrl":null,"url":null,"abstract":"<div><p>There has been an increased interest in the use of solid sorbents for CO<sub>2</sub> capture from flue gases to reduce emissions from fossil energy. This work uses a simple Carnot engine-like model to compare the energy requirements for a CO<sub>2</sub> capture process using a solid adsorbent in a circulating fluidized bed with its minimal thermodynamic needs and with the performance of a conventional liquid solvent process. The energy requirements for CO<sub>2</sub> capture using thermal swing separation sorption are dominated by the standard Gibbs free energy of separation from the sorbent (<span><math><mrow><mstyle><mi>Δ</mi></mstyle><msub><mi>g</mi><mrow><mn>0</mn><mo>,</mo><mi>s</mi><mi>e</mi><mi>p</mi></mrow></msub></mrow></math></span>), the sensible heat needed to reach the desorption temperature, and loading optimization to avoid thermodynamic pinching effects. The <span><math><mrow><mstyle><mi>Δ</mi></mstyle><msub><mi>g</mi><mrow><mn>0</mn><mo>,</mo><mi>s</mi><mi>e</mi><mi>p</mi></mrow></msub></mrow></math></span> is an invariant of the system, so only its value at reference conditions is required and it is independent of the desorption temperature or the heat of evaporation of a liquid solvent. A baseline is established using the <span><math><mrow><mstyle><mi>Δ</mi></mstyle><msub><mi>g</mi><mrow><mn>0</mn><mo>,</mo><mi>s</mi><mi>e</mi><mi>p</mi></mrow></msub></mrow></math></span> as well as the equivalent work for a well-established amine process. In all cases the energy requirements are found to be well above the minimum thermodynamic values and those of conventional liquid absorption. Higher-capacity solid sorbents and challenging improvements on heat recovery will be needed to close the gap.</p></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"137 ","pages":"Article 104227"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Greenhouse Gas Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1750583624001701","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
There has been an increased interest in the use of solid sorbents for CO2 capture from flue gases to reduce emissions from fossil energy. This work uses a simple Carnot engine-like model to compare the energy requirements for a CO2 capture process using a solid adsorbent in a circulating fluidized bed with its minimal thermodynamic needs and with the performance of a conventional liquid solvent process. The energy requirements for CO2 capture using thermal swing separation sorption are dominated by the standard Gibbs free energy of separation from the sorbent (), the sensible heat needed to reach the desorption temperature, and loading optimization to avoid thermodynamic pinching effects. The is an invariant of the system, so only its value at reference conditions is required and it is independent of the desorption temperature or the heat of evaporation of a liquid solvent. A baseline is established using the as well as the equivalent work for a well-established amine process. In all cases the energy requirements are found to be well above the minimum thermodynamic values and those of conventional liquid absorption. Higher-capacity solid sorbents and challenging improvements on heat recovery will be needed to close the gap.
期刊介绍:
The International Journal of Greenhouse Gas Control is a peer reviewed journal focusing on scientific and engineering developments in greenhouse gas control through capture and storage at large stationary emitters in the power sector and in other major resource, manufacturing and production industries. The Journal covers all greenhouse gas emissions within the power and industrial sectors, and comprises both technical and non-technical related literature in one volume. Original research, review and comments papers are included.