首页 > 最新文献

International Journal of Greenhouse Gas Control最新文献

英文 中文
Putting the genie back in the bottle: Decarbonizing petroleum with direct air capture and enhanced oil recovery 将精灵放回瓶中:利用直接空气捕获和强化采油技术实现石油脱碳
IF 4.6 3区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-11-14 DOI: 10.1016/j.ijggc.2024.104281
Jayant Singh , Udayan Singh , Gonzalo Rodriguez Garcia , Vikram Vishal , Robert Anex
This study reports the cradle-to-wheel life cycle greenhouse gas (GHG) emissions resulting from enhanced oil recovery (EOR) using CO2 sourced from direct air capture (DAC). A Monte Carlo simulation model representing variability in technology, location, and supply chain is used to model the possible range of carbon intensities (CI) of oil produced through DAC-EOR. Crude oil produced through DAC-EOR is expected to have a CI of 449 tCO2/mbbl. With 95% confidence, the CI is between 345 tCO2/mbbl to 553 tCO2/mbbl. Producing net-zero GHG emission oil through DAC-EOR is thus highly improbable. An example case of DAC-EOR in the U.S. Permian Basin shows that only in the unlikely instance of the most storage efficient sites using 100% renewable energy does DAC-EOR result in “carbon-negative” oil production.
本研究报告了利用直接空气捕集(DAC)获得的二氧化碳提高石油采收率(EOR)所产生的从摇篮到车轮的生命周期温室气体(GHG)排放量。研究采用蒙特卡洛模拟模型(Monte Carlo simulation model)来模拟通过 DAC-EOR 生产的石油的碳强度 (CI) 的可能范围,该模型代表了技术、地点和供应链的可变性。通过 DAC-EOR 生产的原油的 CI 预计为 449 吨 CO2/桶。在 95% 的置信度下,CI 介于 345 吨 CO2/mbbl 到 553 吨 CO2/mbbl 之间。因此,通过 DAC-EOR 生产净温室气体零排放石油的可能性极低。美国二叠纪盆地的一个 DAC-EOR 案例表明,只有在不太可能的情况下,在使用 100% 可再生能源的存储效率最高的地点,DAC-EOR 才能实现 "负碳 "石油生产。
{"title":"Putting the genie back in the bottle: Decarbonizing petroleum with direct air capture and enhanced oil recovery","authors":"Jayant Singh ,&nbsp;Udayan Singh ,&nbsp;Gonzalo Rodriguez Garcia ,&nbsp;Vikram Vishal ,&nbsp;Robert Anex","doi":"10.1016/j.ijggc.2024.104281","DOIUrl":"10.1016/j.ijggc.2024.104281","url":null,"abstract":"<div><div>This study reports the cradle-to-wheel life cycle greenhouse gas (GHG) emissions resulting from enhanced oil recovery (EOR) using CO<sub>2</sub> sourced from direct air capture (DAC). A Monte Carlo simulation model representing variability in technology, location, and supply chain is used to model the possible range of carbon intensities (CI) of oil produced through DAC-EOR. Crude oil produced through DAC-EOR is expected to have a CI of 449 tCO<sub>2</sub>/mbbl. With 95% confidence, the CI is between 345 tCO<sub>2</sub>/mbbl to 553 tCO<sub>2</sub>/mbbl. Producing net-zero GHG emission oil through DAC-EOR is thus highly improbable. An example case of DAC-EOR in the U.S. Permian Basin shows that only in the unlikely instance of the most storage efficient sites using 100% renewable energy does DAC-EOR result in “carbon-negative” oil production.</div></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"139 ","pages":"Article 104281"},"PeriodicalIF":4.6,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A conceptual evaluation of the use of Ca(OH)2 for attaining carbon capture rates of 99% in the calcium looping process 在钙循环工艺中使用 Ca(OH)2 使碳捕获率达到 99% 的概念评估
IF 4.6 3区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-11-06 DOI: 10.1016/j.ijggc.2024.104279
Markus Secomandi , Markku Nikku , Borja Arias , Jouni Ritvanen
Calcium looping (CaL), typically capable of reducing CO2 emissions by approximately 90%, is a technology well suited to capturing CO2 emissions from a wide array of industrial processes. An approach in which Ca(OH)2 is injected into the carbonator to increase the carbon capture efficiency of the CaL process to 99% was evaluated in this study using a one-and-a-half-dimensional reactor model. The effect of several key parameters was considered, including the injection flow rate, injection elevation, and the formation rate of CO2 in the freeboard of the carbonator due to the combustion of char particles elutriated from the calciner. The main finding was that capture rates of 99% appear attainable, given that enough Ca(OH)2 is injected and that the injection occurs at a suitable location, i.e., the sorbent is allowed sufficient residence time in the reactor.
钙循环(CaL)通常能够减少约 90% 的二氧化碳排放,是一种非常适合捕集各种工业流程中二氧化碳排放的技术。本研究使用一个半维反应器模型,对向碳化器注入 Ca(OH)2 以将 CaL 工艺的碳捕集效率提高到 99% 的方法进行了评估。研究考虑了几个关键参数的影响,包括注入流速、注入高度以及由于煅烧炉洗脱出的炭粒燃烧而在碳化器自由板中形成的二氧化碳的速率。主要发现是,只要注入足够多的 Ca(OH)2,并在合适的位置注入,即吸附剂在反应器中有足够的停留时间,捕集率似乎可以达到 99%。
{"title":"A conceptual evaluation of the use of Ca(OH)2 for attaining carbon capture rates of 99% in the calcium looping process","authors":"Markus Secomandi ,&nbsp;Markku Nikku ,&nbsp;Borja Arias ,&nbsp;Jouni Ritvanen","doi":"10.1016/j.ijggc.2024.104279","DOIUrl":"10.1016/j.ijggc.2024.104279","url":null,"abstract":"<div><div>Calcium looping (CaL), typically capable of reducing CO<sub>2</sub> emissions by approximately 90%, is a technology well suited to capturing CO<sub>2</sub> emissions from a wide array of industrial processes. An approach in which Ca(OH)<sub>2</sub> is injected into the carbonator to increase the carbon capture efficiency of the CaL process to 99% was evaluated in this study using a one-and-a-half-dimensional reactor model. The effect of several key parameters was considered, including the injection flow rate, injection elevation, and the formation rate of CO<sub>2</sub> in the freeboard of the carbonator due to the combustion of char particles elutriated from the calciner. The main finding was that capture rates of 99% appear attainable, given that enough Ca(OH)<sub>2</sub> is injected and that the injection occurs at a suitable location, i.e., the sorbent is allowed sufficient residence time in the reactor.</div></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"139 ","pages":"Article 104279"},"PeriodicalIF":4.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determining the dominant factors controlling mineralization in three-dimensional fracture networks 确定控制三维断裂网络矿化的主要因素
IF 4.6 3区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-11-06 DOI: 10.1016/j.ijggc.2024.104265
Jeffrey D. Hyman , Alexander C. Murph , Lawrence Boampong , Alexis Navarre-Sitchler , James W. Carey , Phil Stauffer , Hari S. Viswanathan
One methodology to reduce CO2 in the atmosphere is inject it into subsurface systems where the ambient conditions are favorable for the carbon to precipitate/mineralize thereby permanently trapping it. Prospective host rocks are relatively impermeable when intact, so the flow of fluids and associated reactive transport therein primarily occurs within and through interconnected fracture networks that provide lower hydraulic resistance. Although critically important for the success of carbon mineralization, the characterization of the interplay between network geostructure, geochemical reactions, and hydrology on the total extent of mineralization is poorly understood. To this end, a set of reactive transport simulations modeling coupled dissolution and precipitation under a variety for hydrological and geochemical conditions are performed to characterize their impact on mineralization in three-dimensional fractured media. The generated data set is used to perform a robust sensitivity analysis and characterize how model parameters, as well as the network structure, affect the total amount of precipitated mineral. It is observed that the reaction rate constant of gypsum, the volume of the network, the incoming volumetric flow rate, and initial porosity showed the strongest impact on the maximum amount of mineralization in the system throughout the simulations.
减少大气中二氧化碳含量的一种方法是将其注入地下系统,在地下系统中,环境条件有利于碳的沉淀/矿化,从而将其永久封存。远景主岩在完好的情况下相对不透水,因此其中的流体流动和相关的反应性迁移主要发生在提供较低水力阻力的相互连接的断裂网络中或通过断裂网络进行。尽管网络地质结构、地球化学反应和水文之间的相互作用对碳矿化的成功至关重要,但人们对其对矿化总范围的影响还知之甚少。为此,我们进行了一组反应传输模拟,模拟了各种水文和地球化学条件下的耦合溶解和沉淀,以确定它们对三维断裂介质中矿化的影响。生成的数据集用于进行稳健的敏感性分析,并确定模型参数和网络结构如何影响沉淀矿物的总量。结果表明,在整个模拟过程中,石膏的反应速率常数、网络体积、流入体积流量和初始孔隙度对系统中最大矿化量的影响最大。
{"title":"Determining the dominant factors controlling mineralization in three-dimensional fracture networks","authors":"Jeffrey D. Hyman ,&nbsp;Alexander C. Murph ,&nbsp;Lawrence Boampong ,&nbsp;Alexis Navarre-Sitchler ,&nbsp;James W. Carey ,&nbsp;Phil Stauffer ,&nbsp;Hari S. Viswanathan","doi":"10.1016/j.ijggc.2024.104265","DOIUrl":"10.1016/j.ijggc.2024.104265","url":null,"abstract":"<div><div>One methodology to reduce CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> in the atmosphere is inject it into subsurface systems where the ambient conditions are favorable for the carbon to precipitate/mineralize thereby permanently trapping it. Prospective host rocks are relatively impermeable when intact, so the flow of fluids and associated reactive transport therein primarily occurs within and through interconnected fracture networks that provide lower hydraulic resistance. Although critically important for the success of carbon mineralization, the characterization of the interplay between network geostructure, geochemical reactions, and hydrology on the total extent of mineralization is poorly understood. To this end, a set of reactive transport simulations modeling coupled dissolution and precipitation under a variety for hydrological and geochemical conditions are performed to characterize their impact on mineralization in three-dimensional fractured media. The generated data set is used to perform a robust sensitivity analysis and characterize how model parameters, as well as the network structure, affect the total amount of precipitated mineral. It is observed that the reaction rate constant of gypsum, the volume of the network, the incoming volumetric flow rate, and initial porosity showed the strongest impact on the maximum amount of mineralization in the system throughout the simulations.</div></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"139 ","pages":"Article 104265"},"PeriodicalIF":4.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced cation release via acid pretreatment for gigaton-scale geologic CO2 sequestration in basalt 通过酸预处理增强阳离子释放,在玄武岩中进行千兆吨级二氧化碳地质封存
IF 4.6 3区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-11-02 DOI: 10.1016/j.ijggc.2024.104266
Qin Zhang , Adedapo N. Awolayo , Patrick R. Phelps , Shafik Vadsariya , Christiaan T. Laureijs , Matthew D. Eisaman , Benjamin M. Tutolo
<div><div>Basalt-based CO<sub>2</sub> mineralization offers gigaton-scale capacity for sequestering anthropogenic CO<sub>2</sub>, but it faces challenges such as low cation productivity and formation of pore-clogging clays. A potential solution is to treat the basalt with aqueous acids such as HCl, a by-product of some electrochemical CO<sub>2</sub> removal processes. To date, our understanding of basalt-acid interactions is limited to extrapolations from higher pH environments, and therefore little is known about the mechanisms of the reaction at acidic conditions. To address this knowledge gap, far-from-equilibrium dissolution rates of basaltic glass and crystalline basalt were measured in mixed flow reactors at pH 0 to 9, and temperatures from 23 to 60 °C, with a specific focus on the low-pH region. Measured geometric surface area-normalized dissolution rates can be described according to: <span><span><span><math><mrow><mi>k</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mrow><mo>(</mo><mn>5</mn><mo>.</mo><mn>6</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo>)</mo></mrow></mrow></msup><mi>⋅</mi><mo>exp</mo><mfenced><mrow><mfenced><mrow><mfrac><mrow><mo>−</mo><mn>42</mn><mo>.</mo><mn>2</mn><mo>±</mo><mn>2</mn><mo>.</mo><mn>0</mn></mrow><mrow><mi>R</mi></mrow></mfrac></mrow></mfenced><mi>⋅</mi><mfenced><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>T</mi></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></mfrac></mrow></mfenced></mrow></mfenced><mi>⋅</mi><msubsup><mrow><mi>a</mi></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow><mrow><mrow><mo>(</mo><mn>0</mn><mo>.</mo><mn>81</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>02</mn><mo>)</mo></mrow></mrow></msubsup><mo>+</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mrow><mo>(</mo><mn>10</mn><mo>.</mo><mn>9</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>3</mn><mo>)</mo></mrow></mrow></msup><mi>⋅</mi><mo>exp</mo><mfenced><mrow><mfenced><mrow><mfrac><mrow><mo>−</mo><mn>32</mn><mo>.</mo><mn>5</mn><mo>±</mo><mn>1</mn><mo>.</mo><mn>1</mn></mrow><mrow><mi>R</mi></mrow></mfrac></mrow></mfenced><mi>⋅</mi><mfenced><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>T</mi></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></mfrac></mrow></mfenced></mrow></mfenced><mi>⋅</mi><msubsup><mrow><mi>a</mi></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow><mrow><mo>−</mo><mrow><mo>(</mo><mn>0</mn><mo>.</mo><mn>15</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>01</mn><mo>)</mo></mrow></mrow></msubsup></mrow></math></span></span></span> where <span><math><mi>k</mi></math></span> is the rate constant (mol<!--> <!-->m<sup>−2</sup> <!-->s<sup>−1</sup>) at any temperature <span><math><mi>T</mi></math></span> (Kelvin) and <span><math><msup><mrow><mtext>H</mtext></mrow><mrow><mo>+</mo></mrow></msup></math></span> a
以玄武岩为基础的二氧化碳矿化可提供千兆吨级的人为二氧化碳封存能力,但它面临着阳离子生产力低和形成孔隙堵塞粘土等挑战。一个潜在的解决方案是用盐酸等水酸处理玄武岩,盐酸是某些电化学二氧化碳去除过程的副产品。迄今为止,我们对玄武岩-酸相互作用的了解仅限于从 pH 值较高的环境中推断,因此对酸性条件下的反应机制知之甚少。为了填补这一知识空白,我们在 pH 值为 0 至 9、温度为 23 至 60 ℃ 的混流反应器中测量了玄武岩玻璃和结晶玄武岩的远平衡溶解速率,重点是低 pH 值区域。测得的几何表面积归一化溶解速率可根据以下公式描述:k=10-(5.6±0.5)⋅exp-42.2±2.0R⋅1T-1Tr⋅aH+(0.81±0.02)+10-(10.9±0.3)⋅exp-32.5±1.1R⋅1T-1Tr⋅aH+-(0. 15±0.01)。15±0.01) 其中,k 是任意温度 T(开尔文)和 H+ 活性(aH+)下的速率常数(mol m-2 s-1),Tr 是参考温度(298.15 K),R 是理想气体常数(8.314 × 10-3 kJ mol-1 K-1)。动力学实验和地球化学建模的综合结果表明,酸与玄武岩反应产生的阳离子释放速度要快上几个数量级,可有效中和流体 pH 值,并通过限制硅在系统中的释放来限制粘土的形成。
{"title":"Enhanced cation release via acid pretreatment for gigaton-scale geologic CO2 sequestration in basalt","authors":"Qin Zhang ,&nbsp;Adedapo N. Awolayo ,&nbsp;Patrick R. Phelps ,&nbsp;Shafik Vadsariya ,&nbsp;Christiaan T. Laureijs ,&nbsp;Matthew D. Eisaman ,&nbsp;Benjamin M. Tutolo","doi":"10.1016/j.ijggc.2024.104266","DOIUrl":"10.1016/j.ijggc.2024.104266","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Basalt-based CO&lt;sub&gt;2&lt;/sub&gt; mineralization offers gigaton-scale capacity for sequestering anthropogenic CO&lt;sub&gt;2&lt;/sub&gt;, but it faces challenges such as low cation productivity and formation of pore-clogging clays. A potential solution is to treat the basalt with aqueous acids such as HCl, a by-product of some electrochemical CO&lt;sub&gt;2&lt;/sub&gt; removal processes. To date, our understanding of basalt-acid interactions is limited to extrapolations from higher pH environments, and therefore little is known about the mechanisms of the reaction at acidic conditions. To address this knowledge gap, far-from-equilibrium dissolution rates of basaltic glass and crystalline basalt were measured in mixed flow reactors at pH 0 to 9, and temperatures from 23 to 60 °C, with a specific focus on the low-pH region. Measured geometric surface area-normalized dissolution rates can be described according to: &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mo&gt;exp&lt;/mo&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;42&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;81&lt;/mn&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;02&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;9&lt;/mn&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mo&gt;exp&lt;/mo&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;32&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;15&lt;/mn&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;01&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; where &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is the rate constant (mol&lt;!--&gt; &lt;!--&gt;m&lt;sup&gt;−2&lt;/sup&gt; &lt;!--&gt;s&lt;sup&gt;−1&lt;/sup&gt;) at any temperature &lt;span&gt;&lt;math&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; (Kelvin) and &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mtext&gt;H&lt;/mtext&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; a","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"139 ","pages":"Article 104266"},"PeriodicalIF":4.6,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conceptual design and evaluation of membrane gas separation-based CO2 recovery unit for CO2 electrolyzers employing anion exchange membranes 采用阴离子交换膜的二氧化碳电解器基于膜气体分离的二氧化碳回收装置的概念设计和评估
IF 4.6 3区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-11-02 DOI: 10.1016/j.ijggc.2024.104278
Hyunshin Lee , Wonsuk Chung , Kosan Roh
Anion exchange membrane (AEM)-based electrolysis for CO2 reduction reaction (CO2RR) has garnered attention as a promising carbon dioxide utilization technology due to its superior energy efficiency at high current densities. The major drawback of AEM-based electrolysis for CO2RR is CO2 crossover, which leads to the loss of introduced CO2 feedstock and thus detrimentally affects the process's overall economic and environmental viability. We design a 3-stage membrane-based CO2 recovery unit to capture CO2 from the mixture of CO2 and O2 discharged from the anode side of AEM-based CO2 electrolyzers. The membrane area is optimized via a hybrid of genetic algorithm and ‘fmincon’ in MATLAB. The estimated CO2 capture cost ranges from 43.3 to 109.3 USD/tCO2, which is economically comparable to piperazine-based amine scrubbing units when recovering CO2 at a purity of up to 99.5 mol.% under a CO2/O2 molar ratio of 1.5∼2. The carbon footprint of the designed process ranges from −0.936 to −0.838 tCO2eq/tCO2-captured, indicating superior environmental performance compared to those of the piperazine-based amine scrubbing units.
基于阴离子交换膜(AEM)的二氧化碳还原反应(CO2RR)电解技术因其在高电流密度下的卓越能效而备受关注,被视为一种前景广阔的二氧化碳利用技术。基于 AEM 的二氧化碳还原反应电解技术的主要缺点是二氧化碳交叉,这会导致引入的二氧化碳原料的损失,从而对该工艺的整体经济和环境可行性产生不利影响。我们设计了一种基于膜的 3 级二氧化碳回收装置,用于从基于 AEM 的二氧化碳电解槽阳极侧排出的二氧化碳和氧气混合物中捕获二氧化碳。膜面积通过 MATLAB 中的遗传算法和 "fmincon "混合算法进行优化。估计的二氧化碳捕获成本为 43.3 至 109.3 美元/吨二氧化碳,在二氧化碳/氧气摩尔比为 1.5∼2 的条件下,回收纯度高达 99.5 mol.% 的二氧化碳时,其经济效益与基于哌嗪的胺洗涤装置相当。所设计工艺的碳足迹范围为-0.936 至 -0.838 tCO2eq/tCO2-captured,表明与哌嗪基胺洗涤装置相比,该工艺具有更优越的环保性能。
{"title":"Conceptual design and evaluation of membrane gas separation-based CO2 recovery unit for CO2 electrolyzers employing anion exchange membranes","authors":"Hyunshin Lee ,&nbsp;Wonsuk Chung ,&nbsp;Kosan Roh","doi":"10.1016/j.ijggc.2024.104278","DOIUrl":"10.1016/j.ijggc.2024.104278","url":null,"abstract":"<div><div>Anion exchange membrane (AEM)-based electrolysis for CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) has garnered attention as a promising carbon dioxide utilization technology due to its superior energy efficiency at high current densities. The major drawback of AEM-based electrolysis for CO<sub>2</sub>RR is CO<sub>2</sub> crossover, which leads to the loss of introduced CO<sub>2</sub> feedstock and thus detrimentally affects the process's overall economic and environmental viability. We design a 3-stage membrane-based CO<sub>2</sub> recovery unit to capture CO<sub>2</sub> from the mixture of CO<sub>2</sub> and O<sub>2</sub> discharged from the anode side of AEM-based CO<sub>2</sub> electrolyzers. The membrane area is optimized via a hybrid of genetic algorithm and ‘fmincon’ in MATLAB. The estimated CO<sub>2</sub> capture cost ranges from 43.3 to 109.3 USD/tCO<sub>2</sub>, which is economically comparable to piperazine-based amine scrubbing units when recovering CO<sub>2</sub> at a purity of up to 99.5 mol.% under a CO<sub>2</sub>/O<sub>2</sub> molar ratio of 1.5∼2. The carbon footprint of the designed process ranges from −0.936 to −0.838 tCO<sub>2</sub>eq/tCO<sub>2</sub>-captured, indicating superior environmental performance compared to those of the piperazine-based amine scrubbing units.</div></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"139 ","pages":"Article 104278"},"PeriodicalIF":4.6,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seismic monitoring of CCS with active and passive data: A synthetic feasibility study based on Pelican site, Australia 利用主动和被动数据对 CCS 进行地震监测:基于澳大利亚鹈鹕场址的合成可行性研究
IF 4.6 3区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-11-01 DOI: 10.1016/j.ijggc.2024.104277
Mrinal Sinha , Erdinc Saygin , Andrew S. Ross , Ludovic Ricard
Carbon capture and storage (CCS) is forecast to play a significant role towards CO2 emissions reduction. Cost-effective and simplified monitoring will be essential for rapid adoption and growth of CCS. Seismic imaging methods are regularly utilized to monitor low-velocity anomalies generated by injection of CO2 in the subsurface. In this study we generate active and passive synthetic seismic datasets at different stages of CO2 injection in the subsurface based on geologically constrained subsurface models of the Pelican storage site in the Gippsland Basin, Australia. We apply full waveform inversion (FWI) and wave-equation dispersion (WD) inversion to seafloor deployed distributed acoustic sensing (DAS) data to reconstruct the low-velocity anomalies. We model both strain (DAS) and displacement datasets for the active data component of the study and show that they result in similar reconstruction of the CO2 anomaly. FWI based time-lapse imaging of active data yields the most accurate results. However, this approach is expensive and also suffers from complex issues because of the near-onshore location of the storage site. Alternatively inverting passive data results in only minor differences, but can still effectively monitor changes in the subsurface, and assist in monitoring the CO2 plume at the reservoir depth. Furthermore, we demonstrate the capability of WD for inverting Scholte-waves derived from ambient noise for shallow detection of CO2 in the unlikely event of a leakage. Therefore, we propose a mixed mode monitoring strategy where passive data is utilized for routine monitoring while active surveys are deployed only when further investigation is required.
碳捕集与封存(CCS)预计将在二氧化碳减排方面发挥重要作用。成本效益高且简化的监测对于 CCS 的快速应用和发展至关重要。地震成像方法经常被用来监测二氧化碳注入地下产生的低速异常。在本研究中,我们根据澳大利亚吉普斯兰盆地鹈鹕封存场的地质约束地下模型,生成了二氧化碳注入地下不同阶段的主动和被动合成地震数据集。我们将全波形反演(FWI)和波方程频散(WD)反演应用于海底部署的分布式声学传感(DAS)数据,以重建低速异常。我们为该研究的主动数据部分建立了应变(DAS)和位移数据集模型,结果表明它们能够重建类似的二氧化碳异常。基于 FWI 的活动数据延时成像可产生最精确的结果。不过,这种方法成本高昂,而且由于储藏点位于近岸,因此存在复杂性问题。另一种方法是对被动数据进行反演,结果差异不大,但仍能有效监测地下的变化,并有助于监测储层深处的二氧化碳羽流。此外,我们还展示了 WD 反演环境噪声产生的肖尔特波的能力,以便在万一发生泄漏的情况下对二氧化碳进行浅层探测。因此,我们提出了一种混合模式监测战略,即在日常监测中使用被动数据,而只有在需要进一步调查时才部署主动勘测。
{"title":"Seismic monitoring of CCS with active and passive data: A synthetic feasibility study based on Pelican site, Australia","authors":"Mrinal Sinha ,&nbsp;Erdinc Saygin ,&nbsp;Andrew S. Ross ,&nbsp;Ludovic Ricard","doi":"10.1016/j.ijggc.2024.104277","DOIUrl":"10.1016/j.ijggc.2024.104277","url":null,"abstract":"<div><div>Carbon capture and storage (CCS) is forecast to play a significant role towards CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions reduction. Cost-effective and simplified monitoring will be essential for rapid adoption and growth of CCS. Seismic imaging methods are regularly utilized to monitor low-velocity anomalies generated by injection of CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> in the subsurface. In this study we generate active and passive synthetic seismic datasets at different stages of CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> injection in the subsurface based on geologically constrained subsurface models of the Pelican storage site in the Gippsland Basin, Australia. We apply full waveform inversion (FWI) and wave-equation dispersion (WD) inversion to seafloor deployed distributed acoustic sensing (DAS) data to reconstruct the low-velocity anomalies. We model both strain (DAS) and displacement datasets for the active data component of the study and show that they result in similar reconstruction of the CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> anomaly. FWI based time-lapse imaging of active data yields the most accurate results. However, this approach is expensive and also suffers from complex issues because of the near-onshore location of the storage site. Alternatively inverting passive data results in only minor differences, but can still effectively monitor changes in the subsurface, and assist in monitoring the CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> plume at the reservoir depth. Furthermore, we demonstrate the capability of WD for inverting Scholte-waves derived from ambient noise for shallow detection of CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> in the unlikely event of a leakage. Therefore, we propose a mixed mode monitoring strategy where passive data is utilized for routine monitoring while active surveys are deployed only when further investigation is required.</div></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"139 ","pages":"Article 104277"},"PeriodicalIF":4.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study on the corrosion behavior of wellbore cement with a leaking channel under different acidic environments 不同酸性环境下带有泄漏通道的井筒水泥腐蚀行为的实验研究
IF 4.6 3区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-10-30 DOI: 10.1016/j.ijggc.2024.104267
Manguang Gan , Liwei Zhang , Yan Wang , Qinglong Qin , Ting Xiao , Yue Yin , Hanwen Wang
In the scenario of geologic CO2 storage, the injection of CO2 can create a carbonic acid-rich environment in the reservoir, and Cl-- and SO42--rich low-pH environments may form in the reservoir if the reservoir brine contains high concentrations of Cl- and SO42-. The analysis of morphological changes in wellbore cement containing leakage channels before and after the reaction in different acidic environments is crucial for assessing the risk of CO2 leakage along the internal cracks of wellbore cement. This study characterizes the morphological and structural changes of wellbore cement with a leaking channel before and after the flow of CO2-saturated brine and then compares the results with the structural changes of channels after exposure to HCl and H2SO4 solutions. The results indicate that the cement around the leaking channel dissolves, and the channel volume increases when exposed to CO2-saturated brine. The reaction is more intense at the inlet end than at the outlet end, and some cracks form around the channel. As the HCl solution flows through the channel, a hydrate precipitate that contains calcium and aluminum forms from the inlet to the middle of the channel. This is due to the aqueous phase cations (Ca2+ and Al3+ released from the hydrated cement phases) mixing with the high pH pore fluid ahead of the acid front. Upon flow of the H2SO4 solution through the channel, a thin layer of precipitation forms on both the inlet and outlet ends of the channel. XRD analysis indicates that the precipitation comprises gypsum (CaSO4·2H2O), which forms due to the reaction between SO42- in the H2SO4 solution and Ca2+ in the cement hydration product. The volume of the channel decreased after exposure to HCl and H2SO4 solutions, indicating that secondary precipitation resulting from the reaction between the cement and acid exceeded the cement dissolution, and the hydrochloric and sulfuric acidic environments had a limited effect on the expansion of the wellbore cement's internal channel. The experimental results of this study also indicate that in an acidic environment with the same pH, the CO2-saturated brine is the most corrosive to wellbore cement, followed by hydrochloric acid, and sulfuric acid is the least corrosive.
在二氧化碳地质封存的情况下,注入的二氧化碳会在储层中形成富含碳酸的环境,如果储层盐水中含有高浓度的Cl-和SO42-,则可能在储层中形成富含Cl-和SO42-的低pH环境。在不同的酸性环境中,分析含有渗漏通道的井筒水泥在反应前后的形态变化,对于评估二氧化碳沿井筒水泥内部裂缝渗漏的风险至关重要。本研究表征了带有泄漏通道的井筒水泥在二氧化碳饱和盐水流动前后的形态和结构变化,然后将结果与暴露于 HCl 和 H2SO4 溶液后通道的结构变化进行了比较。结果表明,在接触二氧化碳饱和盐水时,渗漏通道周围的水泥溶解,通道体积增大。入口端的反应比出口端的强烈,通道周围出现了一些裂缝。当盐酸溶液流经通道时,从入口到通道中间会形成含有钙和铝的水合物沉淀。这是由于水相阳离子(水化水泥相释放的 Ca2+ 和 Al3+)与酸前沿的高 pH 值孔隙流体混合所致。H2SO4 溶液流经通道后,在通道的进口端和出口端都形成了一层薄薄的沉淀。XRD 分析表明,沉淀由石膏(CaSO4-2H2O)组成,是 H2SO4 溶液中的 SO42- 和水泥水化产物中的 Ca2+ 反应形成的。在接触盐酸和 H2SO4 溶液后,通道体积减小,表明水泥与酸反应产生的二次沉淀超过了水泥的溶解,盐酸和硫酸环境对井筒水泥内部通道的扩张影响有限。本研究的实验结果还表明,在相同 pH 值的酸性环境中,二氧化碳饱和盐水对井筒水泥的腐蚀性最强,盐酸次之,硫酸腐蚀性最小。
{"title":"Experimental study on the corrosion behavior of wellbore cement with a leaking channel under different acidic environments","authors":"Manguang Gan ,&nbsp;Liwei Zhang ,&nbsp;Yan Wang ,&nbsp;Qinglong Qin ,&nbsp;Ting Xiao ,&nbsp;Yue Yin ,&nbsp;Hanwen Wang","doi":"10.1016/j.ijggc.2024.104267","DOIUrl":"10.1016/j.ijggc.2024.104267","url":null,"abstract":"<div><div>In the scenario of geologic CO<sub>2</sub> storage, the injection of CO<sub>2</sub> can create a carbonic acid-rich environment in the reservoir, and Cl<sup>-</sup>- and SO<sub>4</sub><sup>2-</sup>-rich low-pH environments may form in the reservoir if the reservoir brine contains high concentrations of Cl<sup>-</sup> and SO<sub>4</sub><sup>2-</sup>. The analysis of morphological changes in wellbore cement containing leakage channels before and after the reaction in different acidic environments is crucial for assessing the risk of CO<sub>2</sub> leakage along the internal cracks of wellbore cement. This study characterizes the morphological and structural changes of wellbore cement with a leaking channel before and after the flow of CO<sub>2</sub>-saturated brine and then compares the results with the structural changes of channels after exposure to HCl and H<sub>2</sub>SO<sub>4</sub> solutions. The results indicate that the cement around the leaking channel dissolves, and the channel volume increases when exposed to CO<sub>2</sub>-saturated brine. The reaction is more intense at the inlet end than at the outlet end, and some cracks form around the channel. As the HCl solution flows through the channel, a hydrate precipitate that contains calcium and aluminum forms from the inlet to the middle of the channel. This is due to the aqueous phase cations (Ca<sup>2+</sup> and Al<sup>3+</sup> released from the hydrated cement phases) mixing with the high pH pore fluid ahead of the acid front. Upon flow of the H<sub>2</sub>SO<sub>4</sub> solution through the channel, a thin layer of precipitation forms on both the inlet and outlet ends of the channel. XRD analysis indicates that the precipitation comprises gypsum (CaSO<sub>4</sub>·2H<sub>2</sub>O), which forms due to the reaction between SO<sub>4</sub><sup>2-</sup> in the H<sub>2</sub>SO<sub>4</sub> solution and Ca<sup>2+</sup> in the cement hydration product. The volume of the channel decreased after exposure to HCl and H<sub>2</sub>SO<sub>4</sub> solutions, indicating that secondary precipitation resulting from the reaction between the cement and acid exceeded the cement dissolution, and the hydrochloric and sulfuric acidic environments had a limited effect on the expansion of the wellbore cement's internal channel. The experimental results of this study also indicate that in an acidic environment with the same pH, the CO<sub>2</sub>-saturated brine is the most corrosive to wellbore cement, followed by hydrochloric acid, and sulfuric acid is the least corrosive.</div></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"139 ","pages":"Article 104267"},"PeriodicalIF":4.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating offshore legacy wells for geologic carbon storage: A case study from the Galveston and Brazos areas in the Gulf of Mexico 评估用于地质碳封存的近海遗留井:墨西哥湾加尔维斯顿和布拉索斯地区案例研究
IF 4.6 3区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-10-28 DOI: 10.1016/j.ijggc.2024.104276
Greg Lackey , Scott Pantaleone , John K. Montgomery , Kristen Busse , Adam W. Aylor , Tracy J. Moffett
Federal offshore waters in the Gulf of Mexico are of interest for large-scale geologic carbon storage (GCS). However, more than 80,000 offshore oil and gas wells exist in the region, which could impact the integrity of sealing intervals. In this study, we propose a screening methodology for ranking offshore legacy wells based on the challenge they may present to GCS. The methodology relies on the review of well regulatory records to 1) identify leakage pathways and assess the potential hazards that wells pose to planned GCS operations, 2) evaluate well features that impact the accessibility of wells to determine the feasibility of potential corrective actions, and 3) rank wells based on the overall challenge they may pose for GCS. We demonstrate our framework by evaluating the construction and abandonment of 156 wells across eight areas of interest (AOIs) in shallow federal waters along the Texas Gulf Coast. The majority (99.3 %) of wells considered were constructed and plugged in a manner that did not isolate prospective GCS targets in the Upper and Lower Miocene formations and may potentially require a challenging or uncertain corrective action prior to GCS. Dataset trends suggest that the observed well construction and plugging designs may be common in shallow offshore federal waters along the Texas Gulf Coast. Consequently, operators pursuing offshore GCS projects in the region may consider selecting areas that avoid challenging wells or performing robust evaluations of legacy well leakage risks to plan corrective action prior to CO2 injection.
墨西哥湾的联邦近海水域对大规模地质碳封存(GCS)很感兴趣。然而,该地区现有 8 万多口近海油气井,这可能会影响密封区间的完整性。在这项研究中,我们提出了一种筛选方法,根据海上遗留油井可能对 GCS 造成的挑战对其进行排序。该方法依赖于对油井监管记录的审查,以便:1)确定泄漏途径并评估油井对计划中的 GCS 作业构成的潜在危害;2)评估影响油井可及性的油井特征,以确定潜在纠正措施的可行性;3)根据油井可能对 GCS 构成的总体挑战对其进行排序。我们通过评估德克萨斯州墨西哥湾沿岸联邦浅水区 8 个相关区域 (AOI) 的 156 口油井的建造和废弃情况来展示我们的框架。大多数(99.3%)油井的建造和封堵方式都没有在上新世和下新世地层中隔离出潜在的全球陆地观测系统目标,可能需要在全球陆地观测系统之前采取具有挑战性或不确定的纠正措施。数据集趋势表明,所观察到的油井建造和堵塞设计可能在德克萨斯州墨西哥湾沿岸的近海联邦浅水区很常见。因此,在该地区实施近海 GCS 项目的运营商可考虑选择避免挑战性油井的区域,或对遗留油井泄漏风险进行严格评估,以便在注入二氧化碳之前计划纠正措施。
{"title":"Evaluating offshore legacy wells for geologic carbon storage: A case study from the Galveston and Brazos areas in the Gulf of Mexico","authors":"Greg Lackey ,&nbsp;Scott Pantaleone ,&nbsp;John K. Montgomery ,&nbsp;Kristen Busse ,&nbsp;Adam W. Aylor ,&nbsp;Tracy J. Moffett","doi":"10.1016/j.ijggc.2024.104276","DOIUrl":"10.1016/j.ijggc.2024.104276","url":null,"abstract":"<div><div>Federal offshore waters in the Gulf of Mexico are of interest for large-scale geologic carbon storage (GCS). However, more than 80,000 offshore oil and gas wells exist in the region, which could impact the integrity of sealing intervals. In this study, we propose a screening methodology for ranking offshore legacy wells based on the challenge they may present to GCS. The methodology relies on the review of well regulatory records to 1) identify leakage pathways and assess the potential hazards that wells pose to planned GCS operations, 2) evaluate well features that impact the accessibility of wells to determine the feasibility of potential corrective actions, and 3) rank wells based on the overall challenge they may pose for GCS. We demonstrate our framework by evaluating the construction and abandonment of 156 wells across eight areas of interest (AOIs) in shallow federal waters along the Texas Gulf Coast. The majority (99.3 %) of wells considered were constructed and plugged in a manner that did not isolate prospective GCS targets in the Upper and Lower Miocene formations and may potentially require a challenging or uncertain corrective action prior to GCS. Dataset trends suggest that the observed well construction and plugging designs may be common in shallow offshore federal waters along the Texas Gulf Coast. Consequently, operators pursuing offshore GCS projects in the region may consider selecting areas that avoid challenging wells or performing robust evaluations of legacy well leakage risks to plan corrective action prior to CO<sub>2</sub> injection.</div></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"139 ","pages":"Article 104276"},"PeriodicalIF":4.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CO2 retention in high-pressure/high-temperature reservoirs of the Yinggehai Basin, northwestern South China Sea 南海西北部莺歌海盆地高压/高温储层的二氧化碳滞留情况
IF 4.6 3区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-10-01 DOI: 10.1016/j.ijggc.2024.104237
Jinyan Lin , Rui Liu , Niklas Heinemann , Johannes M. Miocic , Jinqiang Tian , Zengyu Chen , Lin Hu , Yazhen Zhang , Julien Amalberti , Lichao Wang
Global industry drillings targeted at deep-burial hydrocarbons have renewed the record of maximum sustainable overpressure in sedimentary basins. However, the influence of extremely high overpressure on natural fluid accumulation and artificial waste sequestration is not yet completely understood. To better understand the motion characteristics of the highly overpressured CO2-rich fluid, the CO2 retention capacity was quantified, and the CO2-rich fluid motion trails were evaluated in an ideal natural laboratory in the Yinggehai Basin. The hydraulic sealing capacity was higher than the capillary sealing capacity in the highly overpressured stratum. Relative to the situations of no breach or solely breached by capillary failure, the superposition of capillary and hydraulic failures resulted in the caprock integrity breakage by faults (or fractures), diapirs, and pipes. Meanwhile, the high expulsion flux of CO2-rich fluid caused the consumption of chlorite to generate illite in the caprock of dual-breached fields. The CO2-rich fluid flux of capillary invasion was limited by the inherently low permeability of caprock, which may be insufficient for a dramatic change of hydrogen ions or electron activities to induce remarkable chlorite dissolution in the caprock of the sole-breached field.
全球工业界针对深埋碳氢化合物的钻探刷新了沉积盆地最大可持续超压的记录。然而,人们对超高压对天然流体聚集和人工废物封存的影响尚未完全了解。为了更好地了解高度超压富二氧化碳流体的运动特征,在莺歌海盆地一个理想的天然实验室中,对二氧化碳截留能力进行了量化,并对富二氧化碳流体的运动轨迹进行了评估。在高度超压地层中,水力密封能力高于毛细管密封能力。相对于无破裂或仅由毛细管破裂的情况,毛细管破裂和水力破裂的叠加导致了断层(或裂缝)、斜坡和管道对毛岩完整性的破坏。同时,富二氧化碳流体的高排出通量导致绿泥石的消耗,从而在双破裂油田的盖岩中生成伊利石。毛细管入侵的富二氧化碳流体通量受限于毛岩固有的低渗透性,这可能不足以使氢离子或电子活动发生剧烈变化,从而诱发单浸油田毛岩中绿泥石的显著溶解。
{"title":"CO2 retention in high-pressure/high-temperature reservoirs of the Yinggehai Basin, northwestern South China Sea","authors":"Jinyan Lin ,&nbsp;Rui Liu ,&nbsp;Niklas Heinemann ,&nbsp;Johannes M. Miocic ,&nbsp;Jinqiang Tian ,&nbsp;Zengyu Chen ,&nbsp;Lin Hu ,&nbsp;Yazhen Zhang ,&nbsp;Julien Amalberti ,&nbsp;Lichao Wang","doi":"10.1016/j.ijggc.2024.104237","DOIUrl":"10.1016/j.ijggc.2024.104237","url":null,"abstract":"<div><div>Global industry drillings targeted at deep-burial hydrocarbons have renewed the record of maximum sustainable overpressure in sedimentary basins. However, the influence of extremely high overpressure on natural fluid accumulation and artificial waste sequestration is not yet completely understood. To better understand the motion characteristics of the highly overpressured CO<sub>2</sub>-rich fluid, the CO<sub>2</sub> retention capacity was quantified, and the CO<sub>2</sub>-rich fluid motion trails were evaluated in an ideal natural laboratory in the Yinggehai Basin. The hydraulic sealing capacity was higher than the capillary sealing capacity in the highly overpressured stratum. Relative to the situations of no breach or solely breached by capillary failure, the superposition of capillary and hydraulic failures resulted in the caprock integrity breakage by faults (or fractures), diapirs, and pipes. Meanwhile, the high expulsion flux of CO<sub>2</sub>-rich fluid caused the consumption of chlorite to generate illite in the caprock of dual-breached fields. The CO<sub>2</sub>-rich fluid flux of capillary invasion was limited by the inherently low permeability of caprock, which may be insufficient for a dramatic change of hydrogen ions or electron activities to induce remarkable chlorite dissolution in the caprock of the sole-breached field.</div></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"138 ","pages":"Article 104237"},"PeriodicalIF":4.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An integrated dynamic modeling workflow for acid gas and CO2 geologic storage screening in saline aquifers with faults: A case study in Western Canada 在有断层的含盐含水层中进行酸性气体和二氧化碳地质封存筛选的综合动态建模工作流程:加拿大西部案例研究
IF 4.6 3区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-10-01 DOI: 10.1016/j.ijggc.2024.104258
Alireza Qazvini Firouz , Benyamin Yadali Jamaloei , Alejandro Duvan Lopez Rojas
This study investigates the feasibility of storing the acid gas produced from the oil and gas facilities in Southern Saskatchewan into the Basal Sand aquifer using a coupled wellbore-aquifer-compositional reservoir model. The simulations investigate the pressure change around the fault in proximity of the primary storage location incorporating the influence of reservoir permeability, fault transmissibility, and wellbore configuration, on the factors critical to safe and efficient storage, such as plume migration, pressure changes, and CO2 storage capacity. A compositional fluid model created using an equation of state was integrated into the reservoir model. Simultaneous incorporation of fault transmissibility, phase solubility, water salinity, temporal in-situ hysteresis and structural trapping, and in-situ compositional tracking of individual gas components is considered as the main novelty of this work. The main challenge of the study was the lack of available data to characterize the aquifer. To this end, a comprehensive workflow of reservoir studies and modeling was applied to reduce the uncertainties and evaluate the site selection. The Basal sand scoping models reveal that the aquifer is expected to handle the required disposal volume given its extent. The injected acid gas plume migrates laterally and preferentially towards the northwest, away from the fault, owing to the aquifer's geological structure. CO2 remains entirely in the supercritical state, offering storage advantages due to its lower volume. The reservoir permeability significantly impacts the pressure patterns with lower permeability formations triggering higher wellhead injection pressures. Substantial pressure increases around the sealing fault can be observed. Pressure changes of 110 kPa (16 psi) to over 400 kPa (58 psi) were observed at the fault segment after 20 years of continuous gas injection for the expected range of reservoir properties. Mitigation strategies to minimize the increase in fault pressure entail relocating the injection site away from the fault or utilizing a horizontal well trajectory and using an observation well near the fault for monitoring any pressure buildup and slippage.
本研究采用井筒-含水层-成分储层耦合模型,对将萨斯喀彻温省南部油气设施产生的酸性气体储存到基底沙含水层的可行性进行了调查。模拟研究了主储存地点附近断层周围的压力变化,包括储层渗透性、断层渗透性和井筒构造对安全高效储存的关键因素(如羽流迁移、压力变化和二氧化碳储存能力)的影响。使用状态方程创建的成分流体模型被集成到储层模型中。同时纳入断层渗透率、相溶解度、水盐度、时间原位滞后和结构捕获以及单个气体组分的原位成分跟踪被认为是这项工作的主要创新之处。这项研究面临的主要挑战是缺乏可用数据来描述含水层的特征。为此,采用了储层研究和建模的综合工作流程,以减少不确定性并评估选址。基底砂范围界定模型显示,考虑到含水层的范围,该含水层有望处理所需的弃置量。由于含水层的地质结构,注入的酸性气体羽流向西北方向横向迁移,远离断层。二氧化碳完全处于超临界状态,由于体积较小,因此具有储存优势。储层渗透率对压力模式有很大影响,渗透率较低的地层会引发较高的井口注入压力。可以观察到密封断层周围的压力大幅上升。在预期的储层属性范围内,连续注气 20 年后,在断层段观察到 110 千帕(16 磅/平方英寸)到超过 400 千帕(58 磅/平方英寸)的压力变化。为尽量减少断层压力的增加,采取的缓解战略包括将注入地点迁离断层,或采用水平井轨迹,并在断层附近打一口观测井,以监测任何压力积累和滑动。
{"title":"An integrated dynamic modeling workflow for acid gas and CO2 geologic storage screening in saline aquifers with faults: A case study in Western Canada","authors":"Alireza Qazvini Firouz ,&nbsp;Benyamin Yadali Jamaloei ,&nbsp;Alejandro Duvan Lopez Rojas","doi":"10.1016/j.ijggc.2024.104258","DOIUrl":"10.1016/j.ijggc.2024.104258","url":null,"abstract":"<div><div>This study investigates the feasibility of storing the acid gas produced from the oil and gas facilities in Southern Saskatchewan into the Basal Sand aquifer using a coupled wellbore-aquifer-compositional reservoir model. The simulations investigate the pressure change around the fault in proximity of the primary storage location incorporating the influence of reservoir permeability, fault transmissibility, and wellbore configuration, on the factors critical to safe and efficient storage, such as plume migration, pressure changes, and CO<sub>2</sub> storage capacity. A compositional fluid model created using an equation of state was integrated into the reservoir model. Simultaneous incorporation of fault transmissibility, phase solubility, water salinity, temporal in-situ hysteresis and structural trapping, and in-situ compositional tracking of individual gas components is considered as the main novelty of this work. The main challenge of the study was the lack of available data to characterize the aquifer. To this end, a comprehensive workflow of reservoir studies and modeling was applied to reduce the uncertainties and evaluate the site selection. The Basal sand scoping models reveal that the aquifer is expected to handle the required disposal volume given its extent. The injected acid gas plume migrates laterally and preferentially towards the northwest, away from the fault, owing to the aquifer's geological structure. CO<sub>2</sub> remains entirely in the supercritical state, offering storage advantages due to its lower volume. The reservoir permeability significantly impacts the pressure patterns with lower permeability formations triggering higher wellhead injection pressures. Substantial pressure increases around the sealing fault can be observed. Pressure changes of 110 kPa (16 psi) to over 400 kPa (58 psi) were observed at the fault segment after 20 years of continuous gas injection for the expected range of reservoir properties. Mitigation strategies to minimize the increase in fault pressure entail relocating the injection site away from the fault or utilizing a horizontal well trajectory and using an observation well near the fault for monitoring any pressure buildup and slippage.</div></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"138 ","pages":"Article 104258"},"PeriodicalIF":4.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Greenhouse Gas Control
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1