Manifold-based approach for neural network robustness analysis

Ali Sekmen, Bahadir Bilgin
{"title":"Manifold-based approach for neural network robustness analysis","authors":"Ali Sekmen, Bahadir Bilgin","doi":"10.1038/s44172-024-00263-8","DOIUrl":null,"url":null,"abstract":"It is important to understand the mathematical foundations of neural networks and to include robustness in model evaluation. Here, we introduce algorithms based on manifold curvature estimation to assess neural network robustness. These algorithms rely solely on training data and do not require regular or adversarial test data. Initially, a metric is proposed to measure the curvature of discrete data manifolds by introducing weighted angles concept between subspaces. Following this, a robustness measure is introduced that is independent of network architecture or model parameters. Lastly, two additional methods are introduced, utilizing curvature estimation of special manifolds formed by using gradient vectors between output and input network layers, alongside manifold curvature estimation. A comprehensive evaluation is provided on multiple network models using the CIFAR-10 dataset. Manifold geometry-based robustness analysis may lead to the development of not only accurate but also robust neural network models. Bahadir Bilgin and Ali Sekmen build the framework for examining the post-training robustness of the neural network. Their method estimates the data curvature on the output layer and does not require knowledge of the black-box topology.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00263-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44172-024-00263-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is important to understand the mathematical foundations of neural networks and to include robustness in model evaluation. Here, we introduce algorithms based on manifold curvature estimation to assess neural network robustness. These algorithms rely solely on training data and do not require regular or adversarial test data. Initially, a metric is proposed to measure the curvature of discrete data manifolds by introducing weighted angles concept between subspaces. Following this, a robustness measure is introduced that is independent of network architecture or model parameters. Lastly, two additional methods are introduced, utilizing curvature estimation of special manifolds formed by using gradient vectors between output and input network layers, alongside manifold curvature estimation. A comprehensive evaluation is provided on multiple network models using the CIFAR-10 dataset. Manifold geometry-based robustness analysis may lead to the development of not only accurate but also robust neural network models. Bahadir Bilgin and Ali Sekmen build the framework for examining the post-training robustness of the neural network. Their method estimates the data curvature on the output layer and does not require knowledge of the black-box topology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 Manifold 的神经网络鲁棒性分析方法
了解神经网络的数学基础并将鲁棒性纳入模型评估非常重要。在此,我们介绍基于流形曲率估计的算法,用于评估神经网络的鲁棒性。这些算法仅依赖于训练数据,不需要常规或对抗性测试数据。首先,通过引入子空间之间的加权角度概念,提出了一种度量离散数据流形曲率的方法。随后,引入了一种与网络架构或模型参数无关的鲁棒性测量方法。最后,除了流形曲率估算外,还介绍了另外两种方法,即利用输出和输入网络层之间的梯度向量形成的特殊流形的曲率估算。利用 CIFAR-10 数据集对多个网络模型进行了综合评估。基于流形几何的鲁棒性分析不仅能开发出准确的神经网络模型,还能开发出鲁棒性神经网络模型。Bahadir Bilgin 和 Ali Sekmen 建立了检查神经网络训练后鲁棒性的框架。他们的方法可以估计输出层的数据曲率,而且不需要黑盒拓扑知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bio-inspired multi-dimensional deep fusion learning for predicting dynamical aerospace propulsion systems Perspectives on innovative non-fertilizer applications of sewage sludge for mitigating environmental and health hazards Insights from a multiscale framework on metabolic rate variation driving glioblastoma multiforme growth and invasion Ultra-lightweight rechargeable battery with enhanced gravimetric energy densities >750 Wh kg−1 in lithium–sulfur pouch cell An energy-resolving photon-counting X-ray detector for computed tomography combining silicon-photomultiplier arrays and scintillation crystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1