Xiao-Qiang Shao, Shi-Lei Su, Lin Li, Rejish Nath, Jin-Hui Wu, Weibin Li
{"title":"Rydberg superatoms: An artificial quantum system for quantum information processing and quantum optics","authors":"Xiao-Qiang Shao, Shi-Lei Su, Lin Li, Rejish Nath, Jin-Hui Wu, Weibin Li","doi":"10.1063/5.0211071","DOIUrl":null,"url":null,"abstract":"Dense atom ensembles with Rydberg excitations display intriguing collective effects mediated by their strong, long-range dipole–dipole interactions. These collective effects, often modeled using Rydberg superatoms, have gained significant attention across various fields due to their potential applications in quantum information processing and quantum optics. In this review article, we delve into the theoretical foundations of Rydberg interactions and explore experimental techniques for their manipulation and detection. We also discuss the latest advancements in harnessing Rydberg collective effects for quantum computation and optical quantum technologies. By synthesizing insights from theoretical studies and experimental demonstrations, we aim to provide a comprehensive overview of this rapidly evolving field and its potential impact on the future of quantum technologies.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"98 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0211071","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Dense atom ensembles with Rydberg excitations display intriguing collective effects mediated by their strong, long-range dipole–dipole interactions. These collective effects, often modeled using Rydberg superatoms, have gained significant attention across various fields due to their potential applications in quantum information processing and quantum optics. In this review article, we delve into the theoretical foundations of Rydberg interactions and explore experimental techniques for their manipulation and detection. We also discuss the latest advancements in harnessing Rydberg collective effects for quantum computation and optical quantum technologies. By synthesizing insights from theoretical studies and experimental demonstrations, we aim to provide a comprehensive overview of this rapidly evolving field and its potential impact on the future of quantum technologies.
期刊介绍:
Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles:
Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community.
Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.