Abhishek Singh, Payel Parvin, Bapan Saha, Dibyendu Das
{"title":"Non-equilibrium self-assembly for living matter-like properties","authors":"Abhishek Singh, Payel Parvin, Bapan Saha, Dibyendu Das","doi":"10.1038/s41570-024-00640-z","DOIUrl":null,"url":null,"abstract":"The soft and wet machines of life emerged as the spatially enclosed ensemble of biomolecules with replicating capabilities integrated with metabolic reaction cycles that operate at far-from-equilibrium. A thorough step-by-step synthetic integration of these elements, namely metabolic and replicative properties all confined and operating far-from-equilibrium, can set the stage from which we can ask questions related to the construction of chemical-based evolving systems with living matter-like properties — a monumental endeavour of systems chemistry. The overarching concept of this Review maps the discoveries on this possible integration of reaction networks, self-reproduction and compartmentalization under non-equilibrium conditions. We deconvolute the events of reaction networks and transient compartmentalization and extend the discussion towards self-reproducing systems that can be sustained under non-equilibrium conditions. Although enormous challenges lie ahead in terms of molecular diversity, information transfer, adaptation and selection that are required for open-ended evolution, emerging strategies to generate minimal metabolic cycles can extend our growing understanding of the chemical emergence of the biosphere of Earth. The origins of complex life forms from simple chemicals remain one of the most enigmatic mysteries. This Review explores how non-equilibrium chemical-based systems can exhibit living matter-like properties with an outlook that connects the possibility of diversification, adaptation and evolution.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 10","pages":"723-740"},"PeriodicalIF":38.1000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature reviews. Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41570-024-00640-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The soft and wet machines of life emerged as the spatially enclosed ensemble of biomolecules with replicating capabilities integrated with metabolic reaction cycles that operate at far-from-equilibrium. A thorough step-by-step synthetic integration of these elements, namely metabolic and replicative properties all confined and operating far-from-equilibrium, can set the stage from which we can ask questions related to the construction of chemical-based evolving systems with living matter-like properties — a monumental endeavour of systems chemistry. The overarching concept of this Review maps the discoveries on this possible integration of reaction networks, self-reproduction and compartmentalization under non-equilibrium conditions. We deconvolute the events of reaction networks and transient compartmentalization and extend the discussion towards self-reproducing systems that can be sustained under non-equilibrium conditions. Although enormous challenges lie ahead in terms of molecular diversity, information transfer, adaptation and selection that are required for open-ended evolution, emerging strategies to generate minimal metabolic cycles can extend our growing understanding of the chemical emergence of the biosphere of Earth. The origins of complex life forms from simple chemicals remain one of the most enigmatic mysteries. This Review explores how non-equilibrium chemical-based systems can exhibit living matter-like properties with an outlook that connects the possibility of diversification, adaptation and evolution.
期刊介绍:
Nature Reviews Chemistry is an online-only journal that publishes Reviews, Perspectives, and Comments on various disciplines within chemistry. The Reviews aim to offer balanced and objective analyses of selected topics, providing clear descriptions of relevant scientific literature. The content is designed to be accessible to recent graduates in any chemistry-related discipline while also offering insights for principal investigators and industry-based research scientists. Additionally, Reviews should provide the authors' perspectives on future directions and opinions regarding the major challenges faced by researchers in the field.