Junnan Jiang, Shufen Chu, Fan Zhang, Mingwei Chen, Pan Liu
{"title":"In situ atomic-scale observation of deformation-induced reversible martensitic transformation in a CrMnFeCoNi high entropy alloy","authors":"Junnan Jiang, Shufen Chu, Fan Zhang, Mingwei Chen, Pan Liu","doi":"10.1016/j.jmst.2024.07.042","DOIUrl":null,"url":null,"abstract":"<p>High entropy alloys (HEAs) have attracted much attention for their excellent mechanical properties stemming from diverse deformation mechanisms. Particularly, face-centered cubic (FCC) to body-centered cubic (BCC) martensitic transformation is crucial for enhancing the strength and plasticity of HEAs, particularly at cryogenic temperatures. However, the fundamental atomic mechanism underlying martensitic transformation remains elusive, and the impact of martensitic transformation on the mechanical properties of HEAs at room temperature is unknown. Here, we report in situ atomic-scale observations of a reversible martensitic transformation from FCC to body-centered tetragonal (BCT) and ultimately back to FCC in nanostructured CrMnFeCoNi HEA at room temperature under deformation. This martensitic transformation is completed by the synergistic action of 90° partial dislocations slip on (111)<sub>FCC</sub> plane and atom shuffling, involving the periodic arrangement and slip of two 90° half Shockley partial dislocations <strong><em>a</em></strong>/12<span><span><math><mrow is=\"true\"><mo is=\"true\">[</mo><mover accent=\"true\" is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">¯</mo></mover><mover accent=\"true\" is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">¯</mo></mover><mn is=\"true\">2</mn><mo is=\"true\">]</mo></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">[</mo><mover accent=\"true\" is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">¯</mo></mover><mover accent=\"true\" is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">¯</mo></mover><mn is=\"true\">2</mn><mo is=\"true\">]</mo></mrow></math></script></span>(111) and one 90° Shockley partial dislocation –<strong><em>a</em></strong>/6<span><span><math><mrow is=\"true\"><mo is=\"true\">[</mo><mover accent=\"true\" is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">¯</mo></mover><mover accent=\"true\" is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">¯</mo></mover><mn is=\"true\">2</mn><mo is=\"true\">]</mo></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">[</mo><mover accent=\"true\" is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">¯</mo></mover><mover accent=\"true\" is=\"true\"><mn is=\"true\">1</mn><mo is=\"true\">¯</mo></mover><mn is=\"true\">2</mn><mo is=\"true\">]</mo></mrow></math></script></span>(111) on three successive (111)<sub>FCC</sub> atomic planes. Additionally, the reversible phase transformation induced by high stress dissipates strain energies and hinders crack propagation, thereby enhancing the fracture toughness of HEAs. Our findings contribute to a deeper comprehension of the martensitic transformation mechanisms in HEAs, offering valuable insights for improving their mechanical properties.</p>","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.07.042","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High entropy alloys (HEAs) have attracted much attention for their excellent mechanical properties stemming from diverse deformation mechanisms. Particularly, face-centered cubic (FCC) to body-centered cubic (BCC) martensitic transformation is crucial for enhancing the strength and plasticity of HEAs, particularly at cryogenic temperatures. However, the fundamental atomic mechanism underlying martensitic transformation remains elusive, and the impact of martensitic transformation on the mechanical properties of HEAs at room temperature is unknown. Here, we report in situ atomic-scale observations of a reversible martensitic transformation from FCC to body-centered tetragonal (BCT) and ultimately back to FCC in nanostructured CrMnFeCoNi HEA at room temperature under deformation. This martensitic transformation is completed by the synergistic action of 90° partial dislocations slip on (111)FCC plane and atom shuffling, involving the periodic arrangement and slip of two 90° half Shockley partial dislocations a/12(111) and one 90° Shockley partial dislocation –a/6(111) on three successive (111)FCC atomic planes. Additionally, the reversible phase transformation induced by high stress dissipates strain energies and hinders crack propagation, thereby enhancing the fracture toughness of HEAs. Our findings contribute to a deeper comprehension of the martensitic transformation mechanisms in HEAs, offering valuable insights for improving their mechanical properties.
高熵合金(HEAs)因其源于不同变形机制的优异机械性能而备受关注。特别是面心立方(FCC)到体心立方(BCC)的马氏体转变对于提高高熵合金的强度和塑性至关重要,尤其是在低温条件下。然而,马氏体转变背后的基本原子机制仍然难以捉摸,马氏体转变在室温下对 HEA 机械性能的影响也不得而知。在此,我们报告了原子尺度的原位观测结果,即在室温变形条件下,纳米结构 CrMnFeCoNi HEA 从 FCC 向体心四方(BCT)并最终返回 FCC 的可逆马氏体转变。这种马氏体转变是在(111)FCC平面上的90°偏位错滑移和原子洗牌的协同作用下完成的,其中涉及两个90°半肖克利偏位错a/12[1¯1¯2][1¯1¯2](111)和一个90°肖克利偏位错-a/6[1¯1¯2][1¯1¯2](111)在三个连续的(111)FCC原子平面上的周期性排列和滑移。此外,高应力诱导的可逆相变会耗散应变能,阻碍裂纹扩展,从而提高 HEA 的断裂韧性。我们的发现有助于加深对 HEA 中马氏体转变机制的理解,为改善其机械性能提供了宝贵的见解。
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.