Effect of microbial interactions on performance of community metabolic modeling algorithms: flux balance analysis (FBA), community FBA (cFBA) and SteadyCom.
{"title":"Effect of microbial interactions on performance of community metabolic modeling algorithms: flux balance analysis (FBA), community FBA (cFBA) and SteadyCom.","authors":"Maryam Afarin, Fereshteh Naeimpoor","doi":"10.1007/s00449-024-03072-7","DOIUrl":null,"url":null,"abstract":"<p><p>To explore the impact of microbial interactions on outcomes from three prevalent algorithms (Flux Balance Analysis (FBA), community FBA (cFBA), and SteadyCom) analyzing microbial community metabolic networks, five toy community models representing common microbial interactions were designed. These include commensalism, mutualism, competition, mutualism-competition, and commensalism-competition. Various scenarios, considering different biomass yields and substrate constraints, were examined for each type. In commensal communities, all algorithms consistently produced similar results. However, changes in biomass yields and substrate constraints led to variable abundances (0.33-0.8) and community growth rates (2-5 1/h) within a broad range. For competitive communities, all algorithms predicted growth of fastest-growing member. To comply with the natural coexistence of members, suboptimal solutions over optimal point are recommended. FBA faced challenges in modeling mutualism, consistently predicting growth of only one member. Although cFBA and SteadyCom resulted in a lower community growth rate, coexistence of both members were satisfied. In toy models with dual interactions, more realistic outcomes were achieved contrary to purely competitive model as the dependency fosters the coexistence which was missing in the competitive only scenarios. These findings emphasize the importance of algorithm choice based on specific microbial interaction types for reliable community behavior predictions..</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1833-1848"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-03072-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To explore the impact of microbial interactions on outcomes from three prevalent algorithms (Flux Balance Analysis (FBA), community FBA (cFBA), and SteadyCom) analyzing microbial community metabolic networks, five toy community models representing common microbial interactions were designed. These include commensalism, mutualism, competition, mutualism-competition, and commensalism-competition. Various scenarios, considering different biomass yields and substrate constraints, were examined for each type. In commensal communities, all algorithms consistently produced similar results. However, changes in biomass yields and substrate constraints led to variable abundances (0.33-0.8) and community growth rates (2-5 1/h) within a broad range. For competitive communities, all algorithms predicted growth of fastest-growing member. To comply with the natural coexistence of members, suboptimal solutions over optimal point are recommended. FBA faced challenges in modeling mutualism, consistently predicting growth of only one member. Although cFBA and SteadyCom resulted in a lower community growth rate, coexistence of both members were satisfied. In toy models with dual interactions, more realistic outcomes were achieved contrary to purely competitive model as the dependency fosters the coexistence which was missing in the competitive only scenarios. These findings emphasize the importance of algorithm choice based on specific microbial interaction types for reliable community behavior predictions..
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.