Understanding effects of observing affordance-driven action during motor imagery through EEG analysis.

IF 1.7 4区 医学 Q4 NEUROSCIENCES Experimental Brain Research Pub Date : 2024-10-01 Epub Date: 2024-08-24 DOI:10.1007/s00221-024-06912-w
Supriya Bordoloi, Cota Navin Gupta, Shyamanta M Hazarika
{"title":"Understanding effects of observing affordance-driven action during motor imagery through EEG analysis.","authors":"Supriya Bordoloi, Cota Navin Gupta, Shyamanta M Hazarika","doi":"10.1007/s00221-024-06912-w","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this paper is to investigate the impact of observing affordance-driven action during motor imagery. Affordance-driven action refers to actions that are initiated based on the properties of objects and the possibilities they offer for interaction. Action observation (AO) and motor imagery (MI) are two forms of motor simulation that can influence motor responses. We examined combined AO + MI, where participants simultaneously engaged in AO and MI. Two different kinds of combined AO + MI were employed. Participants imagined and observed the same affordance-driven action during congruent AO + MI, whereas in incongruent AO + MI, participants imagined the actual affordance-driven action while observing a distracting affordance involving the same object. EEG data were analyzed for the N2 component of event-related potential (ERP). Our study found that the N2 ERP became more negative during congruent AO + MI, indicating strong affordance-related activity. The maximum source current density (0.00611 <math><mi>μ</mi></math> A/mm <math><mmultiscripts><mrow></mrow> <mrow></mrow> <mn>2</mn></mmultiscripts> </math> ) using Low-Resolution Electromagnetic Tomography (LORETA) was observed during congruent AO + MI in brain areas responsible for planning motoric actions. This is consistent with prefrontal cortex and premotor cortex activity for AO + MI reported in the literature. The stronger neural activity observed during congruent AO + MI suggests that affordance-driven actions hold promise for neurorehabilitation.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"2473-2485"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00221-024-06912-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/24 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to investigate the impact of observing affordance-driven action during motor imagery. Affordance-driven action refers to actions that are initiated based on the properties of objects and the possibilities they offer for interaction. Action observation (AO) and motor imagery (MI) are two forms of motor simulation that can influence motor responses. We examined combined AO + MI, where participants simultaneously engaged in AO and MI. Two different kinds of combined AO + MI were employed. Participants imagined and observed the same affordance-driven action during congruent AO + MI, whereas in incongruent AO + MI, participants imagined the actual affordance-driven action while observing a distracting affordance involving the same object. EEG data were analyzed for the N2 component of event-related potential (ERP). Our study found that the N2 ERP became more negative during congruent AO + MI, indicating strong affordance-related activity. The maximum source current density (0.00611 μ A/mm 2 ) using Low-Resolution Electromagnetic Tomography (LORETA) was observed during congruent AO + MI in brain areas responsible for planning motoric actions. This is consistent with prefrontal cortex and premotor cortex activity for AO + MI reported in the literature. The stronger neural activity observed during congruent AO + MI suggests that affordance-driven actions hold promise for neurorehabilitation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过脑电图分析了解在运动想象过程中观察承受力驱动动作的效果。
本文旨在研究在运动想象过程中观察能力驱动行动的影响。能力驱动行动指的是根据物体的属性及其提供的互动可能性而启动的行动。动作观察(AO)和运动想象(MI)是两种能影响运动反应的运动模拟形式。我们研究了 "动作观察+动作想象 "的组合,即参与者同时进行 "动作观察 "和 "动作想象"。我们采用了两种不同的组合 AO + MI。在一致的 AO + MI 中,受试者想象并观察同一个由负担驱动的动作;而在不一致的 AO + MI 中,受试者想象实际的由负担驱动的动作,同时观察涉及同一物体的干扰负担。我们分析了脑电图数据中事件相关电位(ERP)的 N2 分量。我们的研究发现,在一致的 AO + MI 过程中,N2 ERP 变得更负,这表明与承受力相关的活动很强。利用低分辨率电磁断层扫描(LORETA)技术,我们观察到在同位AO + MI期间,负责规划运动动作的脑区的源电流密度最大(0.00611 μ A/mm 2)。这与文献报道的前额叶皮层和前运动皮层的 AO + MI 活动一致。在一致的 AO + MI 过程中观察到的更强的神经活动表明,可负担性驱动的行动为神经康复带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
5.00%
发文量
228
审稿时长
1 months
期刊介绍: Founded in 1966, Experimental Brain Research publishes original contributions on many aspects of experimental research of the central and peripheral nervous system. The focus is on molecular, physiology, behavior, neurochemistry, developmental, cellular and molecular neurobiology, and experimental pathology relevant to general problems of cerebral function. The journal publishes original papers, reviews, and mini-reviews.
期刊最新文献
Synchronization of auditory-hand tapping coupling: the effect of aging. The roles of vision and proprioception in spatial tuning of sensory attenuation. Acute hypoalgesic and neurophysiological responses to lower-limb ischaemic preconditioning. The role of muscle synergies and task constraints on upper limb motor impairment after stroke. The link between eye movements and cognitive function in mild to moderate Alzheimer's disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1