Tomas Strucko, Adrian-E Gadar-Lopez, Frederik B Frøhling, Emma T Frost, Esther F Iversen, Helen Olsson, Zofia D Jarczynska, Uffe H Mortensen
{"title":"Oligonucleotide-based CRISPR-Cas9 toolbox for efficient engineering of Komagataella phaffii.","authors":"Tomas Strucko, Adrian-E Gadar-Lopez, Frederik B Frøhling, Emma T Frost, Esther F Iversen, Helen Olsson, Zofia D Jarczynska, Uffe H Mortensen","doi":"10.1093/femsyr/foae026","DOIUrl":null,"url":null,"abstract":"<p><p>Komagataella phaffii (Pichia pastoris) is a methylotrophic yeast that is favored by industry and academia mainly for expression of heterologous proteins. However, its full potential as a host for bioproduction of valuable compounds cannot be fully exploited as genetic tools are lagging behind those that are available for baker's yeast. The emergence of CRISPR-Cas9 technology has significantly improved the efficiency of gene manipulations of K. phaffii, but improvements in gene-editing methods are desirable to further accelerate engineering of this yeast. In this study, we have developed a versatile vector-based CRISPR-Cas9 method and showed that it works efficiently at different genetic loci using linear DNA fragments with very short targeting sequences including single-stranded oligonucleotides. Notably, we performed site-specific point mutations and full gene deletions using short (90 nt) single-stranded oligonucleotides at very high efficiencies. Lastly, we present a strategy for transient inactivation of nonhomologous end-joining (NHEJ) pathway, where KU70 gene is disrupted by a visual marker (uidA gene). This system enables precise CRISPR-Cas9-based editing (including multiplexing) and facilitates simple reversion to NHEJ-proficient genotype. In conclusion, the tools presented in this study can be applied for easy and efficient engineering of K. phaffii strains and are compatible with high-throughput automated workflows.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364938/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foae026","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Komagataella phaffii (Pichia pastoris) is a methylotrophic yeast that is favored by industry and academia mainly for expression of heterologous proteins. However, its full potential as a host for bioproduction of valuable compounds cannot be fully exploited as genetic tools are lagging behind those that are available for baker's yeast. The emergence of CRISPR-Cas9 technology has significantly improved the efficiency of gene manipulations of K. phaffii, but improvements in gene-editing methods are desirable to further accelerate engineering of this yeast. In this study, we have developed a versatile vector-based CRISPR-Cas9 method and showed that it works efficiently at different genetic loci using linear DNA fragments with very short targeting sequences including single-stranded oligonucleotides. Notably, we performed site-specific point mutations and full gene deletions using short (90 nt) single-stranded oligonucleotides at very high efficiencies. Lastly, we present a strategy for transient inactivation of nonhomologous end-joining (NHEJ) pathway, where KU70 gene is disrupted by a visual marker (uidA gene). This system enables precise CRISPR-Cas9-based editing (including multiplexing) and facilitates simple reversion to NHEJ-proficient genotype. In conclusion, the tools presented in this study can be applied for easy and efficient engineering of K. phaffii strains and are compatible with high-throughput automated workflows.
期刊介绍:
FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.