Oligonucleotide-based CRISPR-Cas9 toolbox for efficient engineering of Komagataella phaffii.

IF 2.4 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY FEMS yeast research Pub Date : 2024-01-09 DOI:10.1093/femsyr/foae026
Tomas Strucko, Adrian-E Gadar-Lopez, Frederik B Frøhling, Emma T Frost, Esther F Iversen, Helen Olsson, Zofia D Jarczynska, Uffe H Mortensen
{"title":"Oligonucleotide-based CRISPR-Cas9 toolbox for efficient engineering of Komagataella phaffii.","authors":"Tomas Strucko, Adrian-E Gadar-Lopez, Frederik B Frøhling, Emma T Frost, Esther F Iversen, Helen Olsson, Zofia D Jarczynska, Uffe H Mortensen","doi":"10.1093/femsyr/foae026","DOIUrl":null,"url":null,"abstract":"<p><p>Komagataella phaffii (Pichia pastoris) is a methylotrophic yeast that is favored by industry and academia mainly for expression of heterologous proteins. However, its full potential as a host for bioproduction of valuable compounds cannot be fully exploited as genetic tools are lagging behind those that are available for baker's yeast. The emergence of CRISPR-Cas9 technology has significantly improved the efficiency of gene manipulations of K. phaffii, but improvements in gene-editing methods are desirable to further accelerate engineering of this yeast. In this study, we have developed a versatile vector-based CRISPR-Cas9 method and showed that it works efficiently at different genetic loci using linear DNA fragments with very short targeting sequences including single-stranded oligonucleotides. Notably, we performed site-specific point mutations and full gene deletions using short (90 nt) single-stranded oligonucleotides at very high efficiencies. Lastly, we present a strategy for transient inactivation of nonhomologous end-joining (NHEJ) pathway, where KU70 gene is disrupted by a visual marker (uidA gene). This system enables precise CRISPR-Cas9-based editing (including multiplexing) and facilitates simple reversion to NHEJ-proficient genotype. In conclusion, the tools presented in this study can be applied for easy and efficient engineering of K. phaffii strains and are compatible with high-throughput automated workflows.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364938/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foae026","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Komagataella phaffii (Pichia pastoris) is a methylotrophic yeast that is favored by industry and academia mainly for expression of heterologous proteins. However, its full potential as a host for bioproduction of valuable compounds cannot be fully exploited as genetic tools are lagging behind those that are available for baker's yeast. The emergence of CRISPR-Cas9 technology has significantly improved the efficiency of gene manipulations of K. phaffii, but improvements in gene-editing methods are desirable to further accelerate engineering of this yeast. In this study, we have developed a versatile vector-based CRISPR-Cas9 method and showed that it works efficiently at different genetic loci using linear DNA fragments with very short targeting sequences including single-stranded oligonucleotides. Notably, we performed site-specific point mutations and full gene deletions using short (90 nt) single-stranded oligonucleotides at very high efficiencies. Lastly, we present a strategy for transient inactivation of nonhomologous end-joining (NHEJ) pathway, where KU70 gene is disrupted by a visual marker (uidA gene). This system enables precise CRISPR-Cas9-based editing (including multiplexing) and facilitates simple reversion to NHEJ-proficient genotype. In conclusion, the tools presented in this study can be applied for easy and efficient engineering of K. phaffii strains and are compatible with high-throughput automated workflows.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于寡核苷酸的 CRISPR-Cas9 工具箱,用于高效的 Komagataella phaffii 工程。
Komagataella phaffii(Pichia pastoris)是一种甲基营养酵母,受到工业界和学术界的青睐,主要用于表达异源蛋白。然而,由于遗传工具落后于面包酵母,它作为生物生产有价值化合物的宿主的潜力无法得到充分挖掘。CRISPR-Cas9 技术的出现大大提高了 K. phaffii 的基因操作效率,但要进一步加快这种酵母的工程化进程,还需要改进基因编辑方法。在这项研究中,我们开发了一种基于载体的多功能 CRISPR-Cas9 方法,并证明它能在不同的基因位点上高效地使用具有极短靶向序列(包括单链寡核苷酸)的线性 DNA 片段。值得注意的是,我们使用短(90 nt)单链寡核苷酸以极高的效率实现了位点特异性突变和全基因缺失。最后,我们介绍了一种瞬时失活非同源末端连接(NHEJ)通路的策略,通过视觉标记(uidA 基因)破坏 KU70 基因。该系统可实现基于 CRISPR-Cas9 的精确编辑(包括多路复用),并便于简单地还原为 NHEJ 基因缺陷型。总之,本研究中介绍的工具可用于简便、高效的 K. phaffii 菌株工程,并与高通量自动化工作流程兼容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
FEMS yeast research
FEMS yeast research 生物-生物工程与应用微生物
CiteScore
5.70
自引率
6.20%
发文量
54
审稿时长
1 months
期刊介绍: FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.
期刊最新文献
A multidimensional assessment of in-host fitness costs of drug resistance in the opportunistic fungal pathogen Candida glabrata. Bridging the Gap: linking Torulaspora delbrueckii Genotypes to Fermentation Phenotypes and Wine Aroma. Phosphatidylserine synthase plays a critical role in the utilization of n-alkanes in the yeast Yarrowia lipolytica Isolation and characterisation of Saccharomyces cerevisiae mutants with increased cell wall chitin using fluorescence-activated cell sorting The potential for scotch malt whisky flavour diversification by yeast
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1