首页 > 最新文献

FEMS yeast research最新文献

英文 中文
Comprehensive survey of kombucha microbial communities of diverse origins and fermentation practices.
IF 2.4 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-02-04 DOI: 10.1093/femsyr/foaf005
Emna Ben Saad, Anne Friedrich, Frédérique Fischer, Olivier Courot, Joseph Schacherer, Claudine Bleykasten

Kombucha is a unique, naturally fermented sweetened tea produced for thousands of years, relying on a symbiotic microbiota in a floating biofilm, used for successive fermentations. The microbial communities consist of yeast and bacteria species, distributed across two phases: the liquid and the biofilm fractions. In the fermentation of kombucha, various starters of different shapes and origins are used and there are multiple brewing practices. By metabarcoding, we explored here the consortia and their evolution from a collection of 23 starters coming from various origins summarizing the diversity of kombucha fermentation processes. A core microbiota of yeast and bacteria has been identified in these diverse kombucha symbiotic consortia, revealing consistent core taxa across SCOBYs from different starters. The common core consists of five taxa: two yeast species from the Brettanomyces genus (B. bruxellensis and B. anomalus), and bacterial taxa Komagataeibacter, Lactobacillus, Acetobacteraceae, including the Acetobacter genus. The distribution of yeast and bacteria core taxa differs between the liquid and biofilm fractions, as well as between the 'mother' and 'daughter' biofilms used in successive fermentations. In terms of microbial composition, the diversity is relatively low, with only a few accessory taxa identified. Overall, our study provides a deeper understanding of the core and accessory taxa involved in kombucha fermentation.

{"title":"Comprehensive survey of kombucha microbial communities of diverse origins and fermentation practices.","authors":"Emna Ben Saad, Anne Friedrich, Frédérique Fischer, Olivier Courot, Joseph Schacherer, Claudine Bleykasten","doi":"10.1093/femsyr/foaf005","DOIUrl":"https://doi.org/10.1093/femsyr/foaf005","url":null,"abstract":"<p><p>Kombucha is a unique, naturally fermented sweetened tea produced for thousands of years, relying on a symbiotic microbiota in a floating biofilm, used for successive fermentations. The microbial communities consist of yeast and bacteria species, distributed across two phases: the liquid and the biofilm fractions. In the fermentation of kombucha, various starters of different shapes and origins are used and there are multiple brewing practices. By metabarcoding, we explored here the consortia and their evolution from a collection of 23 starters coming from various origins summarizing the diversity of kombucha fermentation processes. A core microbiota of yeast and bacteria has been identified in these diverse kombucha symbiotic consortia, revealing consistent core taxa across SCOBYs from different starters. The common core consists of five taxa: two yeast species from the Brettanomyces genus (B. bruxellensis and B. anomalus), and bacterial taxa Komagataeibacter, Lactobacillus, Acetobacteraceae, including the Acetobacter genus. The distribution of yeast and bacteria core taxa differs between the liquid and biofilm fractions, as well as between the 'mother' and 'daughter' biofilms used in successive fermentations. In terms of microbial composition, the diversity is relatively low, with only a few accessory taxa identified. Overall, our study provides a deeper understanding of the core and accessory taxa involved in kombucha fermentation.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143188642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel method for telomere length detection in fission yeast. 裂变酵母端粒长度检测的新方法。
IF 2.4 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-01-30 DOI: 10.1093/femsyr/foae040
Hadeel A B Elnaim Mohamed, Hizlan Hincal Agus, Bedia Palabiyik

Fission yeast is the ideal model organism for studying telomere maintenance in higher eukaryotes. Telomere length has been directly correlated with life expectancy and the onset of aging-related diseases in mammals. In this study, we developed a novel simple, and reproducible method to measure the telomere length, by investigating the effect of caffeine and cisplatin on the telomere length in fission yeast. Hydroxyurea-synchronized fission yeast cells were exposed to 62 µM cisplatin and 8.67 mM caffeine treatments for 2 h, then their telomere lengths were evaluated with two different methods. First, the quantitative polymerase chain reaction (qPCR) assay was used as a confirmative method, where telomere length was determined relative to a single-copy gene in the genome. Second, the newly developed method standard polymerase chain reaction (PCR)/ImageJ assay assessed the telomere length based on the amplified PCR band intensity using a set of telomere primers, reflecting telomeric sequence availability in the genome. Both methods show a significant decrease and a notable telomere lengthening in response to cisplatin and caffeine treatments, respectively. The finding supports the accuracy and productivity of the standard PCR/ImageJ assay as it can serve as a quick screening tool to study the effect of suspected chemotherapeutic and antiaging drugs on telomere length in fission yeast.

裂变酵母是研究高等真核生物端粒维持的理想模式生物。在哺乳动物中,端粒长度与预期寿命和衰老相关疾病的发病直接相关。在这项研究中,我们通过研究咖啡因和顺铂对裂变酵母端粒长度的影响,建立了一种新的简单,可重复的方法来测量端粒长度。将羟基脲同步裂变酵母细胞分别暴露于62 μM顺铂和8.67 mM咖啡因处理2小时后,用两种不同的方法测定其端粒长度。首先:定量PCR法被用作一种确认方法,其中端粒长度相对于基因组中的单个拷贝基因确定。第二:新开发的方法标准PCR/ImageJ法使用一组端粒引物,根据扩增的PCR条带强度评估端粒长度,反映端粒序列在基因组中的可用性。两种方法分别显示顺铂和咖啡因治疗的显著减少和显着的端粒延长。这一发现支持了标准PCR/ImageJ检测的准确性和生产力,因为它可以作为一种快速筛选工具来研究疑似化疗和抗衰老药物对裂变酵母端粒长度的影响。
{"title":"A novel method for telomere length detection in fission yeast.","authors":"Hadeel A B Elnaim Mohamed, Hizlan Hincal Agus, Bedia Palabiyik","doi":"10.1093/femsyr/foae040","DOIUrl":"10.1093/femsyr/foae040","url":null,"abstract":"<p><p>Fission yeast is the ideal model organism for studying telomere maintenance in higher eukaryotes. Telomere length has been directly correlated with life expectancy and the onset of aging-related diseases in mammals. In this study, we developed a novel simple, and reproducible method to measure the telomere length, by investigating the effect of caffeine and cisplatin on the telomere length in fission yeast. Hydroxyurea-synchronized fission yeast cells were exposed to 62 µM cisplatin and 8.67 mM caffeine treatments for 2 h, then their telomere lengths were evaluated with two different methods. First, the quantitative polymerase chain reaction (qPCR) assay was used as a confirmative method, where telomere length was determined relative to a single-copy gene in the genome. Second, the newly developed method standard polymerase chain reaction (PCR)/ImageJ assay assessed the telomere length based on the amplified PCR band intensity using a set of telomere primers, reflecting telomeric sequence availability in the genome. Both methods show a significant decrease and a notable telomere lengthening in response to cisplatin and caffeine treatments, respectively. The finding supports the accuracy and productivity of the standard PCR/ImageJ assay as it can serve as a quick screening tool to study the effect of suspected chemotherapeutic and antiaging drugs on telomere length in fission yeast.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11781191/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142885275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring pectinolytic yeast diversity: toward effective polygalacturonase producers for applications in wine-making. 探索果胶分解酵母菌的多样性:寻找在酿酒中应用的有效的聚半乳糖醛酸酶生产者。
IF 2.4 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-01-30 DOI: 10.1093/femsyr/foae033
Mehmet Gazaloğlu, Carole Camarasa, Elke Nevoigt

Pectinolytic enzymes secreted by yeasts have an untapped potential in industry, particularly in wine-making. This study addresses the limitations of the current screening methods in reliably predicting the capacity of pectinolytic yeast strains to secrete polygalacturonase (PGase) under industrial conditions, suggesting a novel screening approach. Using the context of wine-making as an example, a diverse collection of 512 yeast strains from 17 species was analysed for PGase secretion, a key enzyme in pectinolysis. The traditional halo assay on solid yeast-pepton-dextrose (YPD) medium revealed 118 strains from nine genera being PGase positive. Screening these strains by incubating them at 20°C on a solid synthetic grape juice medium containing polygalacturonic acid (PG) significantly reduced the number of promising strains to 35. They belong to five genera: Kluyveromyces sp., Cryptococcus, Pichia, Torulaspora, and Rhodotorula. Afterward, a newly developed pectin-iodine assay was used to precisely quantify the PGase activity of the best-performing strains in a liquid medium. Strains from Kluyveromyces and Cryptococcus sp. stood out regarding high pectinolytic activity. Our methodological advancements tailored to identify highly promising pectinolytic yeasts for industrial use open new avenues for wine-making and other industrial processes encompassing media rich in pectin and sugars.

酵母菌分泌的果胶分解酶在工业上具有未开发的潜力,特别是在酿酒方面。本研究解决了目前筛选方法在可靠地预测果胶溶酵母菌株在工业条件下分泌聚半乳糖醛酸酶(PGase)能力方面的局限性,提出了一种新的筛选方法。以酿酒为例,对来自17个品种的512株酵母菌进行了pga酶分泌分析,pga酶是果胶分解的关键酶。传统的halo法在固体YPD培养基上检测出9属118株PGase阳性。在含聚半乳糖醛酸(PG)的固体合成葡萄汁培养基上20°C孵育筛选这些菌株,使有希望的菌株数量显著减少到35株。它们分属5属:克卢维菌属、隐球菌属、毕赤酵母属、圆菌属和红菌属。随后,一种新开发的果胶碘测定法被用于精确量化液体培养基中表现最好的菌株的PGase活性。Kluyveromyces和隐球菌属的菌株在果胶溶解活性方面表现突出。我们的方法进步量身定制,以确定极有前途的果胶分解酵母用于工业用途,为酿酒和其他工业过程开辟了新的途径,包括富含果胶和糖的介质。
{"title":"Exploring pectinolytic yeast diversity: toward effective polygalacturonase producers for applications in wine-making.","authors":"Mehmet Gazaloğlu, Carole Camarasa, Elke Nevoigt","doi":"10.1093/femsyr/foae033","DOIUrl":"10.1093/femsyr/foae033","url":null,"abstract":"<p><p>Pectinolytic enzymes secreted by yeasts have an untapped potential in industry, particularly in wine-making. This study addresses the limitations of the current screening methods in reliably predicting the capacity of pectinolytic yeast strains to secrete polygalacturonase (PGase) under industrial conditions, suggesting a novel screening approach. Using the context of wine-making as an example, a diverse collection of 512 yeast strains from 17 species was analysed for PGase secretion, a key enzyme in pectinolysis. The traditional halo assay on solid yeast-pepton-dextrose (YPD) medium revealed 118 strains from nine genera being PGase positive. Screening these strains by incubating them at 20°C on a solid synthetic grape juice medium containing polygalacturonic acid (PG) significantly reduced the number of promising strains to 35. They belong to five genera: Kluyveromyces sp., Cryptococcus, Pichia, Torulaspora, and Rhodotorula. Afterward, a newly developed pectin-iodine assay was used to precisely quantify the PGase activity of the best-performing strains in a liquid medium. Strains from Kluyveromyces and Cryptococcus sp. stood out regarding high pectinolytic activity. Our methodological advancements tailored to identify highly promising pectinolytic yeasts for industrial use open new avenues for wine-making and other industrial processes encompassing media rich in pectin and sugars.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11781195/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142852962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cdr1 in focus: a personal reflection on multidrug transporter research.
IF 2.4 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-01-30 DOI: 10.1093/femsyr/foaf003
Rajendra Prasad

Drug resistance mechanisms in human pathogenic Candida species are constantly evolving. Over time, these species have developed diverse strategies to counter the effects of various drug classes, making them a significant threat to human health. In addition to well-known mechanisms such as drug target modification, overexpression, and chromosome duplication, Candida species have also developed permeability barriers to antifungal drugs through reduced drug import or increased efflux. The genomes of Candida species contain a multitude of drug resistance genes, many of which encode membrane efflux transporters that actively expel drugs, preventing their toxic accumulation inside the cells and contributing to multidrug resistance. This brief personal retrospective piece for the "Thematic Issue on Celebrating 30 Years of Cdr1 Research: new trends in antifungal therapy and drug resistance" looks back as to how antifungal research has shifted focus since the identification of the first multidrug transporter gene, CDR1 (Candida Drug Resistance 1), leading to new insights into how reduced azole permeability across Candida cell membranes influences antifungal susceptibility.

{"title":"Cdr1 in focus: a personal reflection on multidrug transporter research.","authors":"Rajendra Prasad","doi":"10.1093/femsyr/foaf003","DOIUrl":"10.1093/femsyr/foaf003","url":null,"abstract":"<p><p>Drug resistance mechanisms in human pathogenic Candida species are constantly evolving. Over time, these species have developed diverse strategies to counter the effects of various drug classes, making them a significant threat to human health. In addition to well-known mechanisms such as drug target modification, overexpression, and chromosome duplication, Candida species have also developed permeability barriers to antifungal drugs through reduced drug import or increased efflux. The genomes of Candida species contain a multitude of drug resistance genes, many of which encode membrane efflux transporters that actively expel drugs, preventing their toxic accumulation inside the cells and contributing to multidrug resistance. This brief personal retrospective piece for the \"Thematic Issue on Celebrating 30 Years of Cdr1 Research: new trends in antifungal therapy and drug resistance\" looks back as to how antifungal research has shifted focus since the identification of the first multidrug transporter gene, CDR1 (Candida Drug Resistance 1), leading to new insights into how reduced azole permeability across Candida cell membranes influences antifungal susceptibility.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"25 ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11781190/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143064866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a yeast-based sensor platform for evaluation of ligands recognized by the human free fatty acid 2 receptor. 基于酵母的人体游离脂肪酸2受体识别配体传感器平台的开发。
IF 2.4 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-01-30 DOI: 10.1093/femsyr/foaf001
Andrea Clausen Lind, Davi De Castro Gomes, Ricardo Bisquert, Jonas Mårtensson, Martina Sundqvist, Huamei Forsman, Claes Dahlgren, Florian David, Verena Siewers

Yeast-based sensors have shown great applicability for deorphanization of G protein-coupled receptors (GPCRs) and screening of ligands targeting these. A GPCR of great interest is free fatty acid 2 receptor (FFA2R), for which short-chain fatty acids such as propionate and acetate are agonists. FFA2R regulates a wide array of downstream receptor signaling pathways in both adipose tissue and immune cells and has been recognized as a promising therapeutic target, having been implicated in several metabolic and inflammatory diseases. While research aiming to identify ligands recognized by FFA2R for translational applications is ongoing, screening is complicated by the complex regulatory and cell-specific responses mediated by the receptor. To simplify screening towards identification of novel ligands, heterologous platforms are valuable tools that offer efficient identification of ligand activity in the absence of regulatory mechanisms. Here, we present a yeast-based sensor designed to evaluate G protein α i1-mediated FFA2R signaling, with an assay time of 3 h. We verify this platform towards the natural agonists, propionate and acetate, and show applicability towards evaluation of synthetic agonists, antagonists, and allosteric agonists. As such, we believe that the developed yeast strain constitutes a promising screening platform for effective evaluation of ligands acting on FFA2R.

基于酵母的传感器在G蛋白偶联受体(gpcr)的去孤儿化和靶向这些受体的配体筛选方面显示出很大的适用性。游离脂肪酸2受体(FFA2R)是一种非常有趣的GPCR,短链脂肪酸如丙酸和醋酸盐是其激动剂。FFA2R调节脂肪组织和免疫细胞中的一系列下游受体信号通路,已被认为是一个有希望的治疗靶点,涉及多种代谢和炎症性疾病。虽然旨在鉴定FFA2R识别的配体用于翻译应用的研究正在进行中,但由于受体介导的复杂调控和细胞特异性反应,筛选变得复杂。为了简化新配体的筛选鉴定,异源平台是在缺乏调节机制的情况下提供有效鉴定配体活性的有价值的工具。在这里,我们提出了一种基于酵母的传感器,旨在评估G蛋白α i1介导的FFA2R信号,检测时间为3小时。我们验证了该平台对天然激动剂,丙酸盐和醋酸盐的影响,并证明该平台适用于评估合成激动剂,拮抗剂和变构激动剂。因此,我们相信所开发的酵母菌株构成了一个有前景的筛选平台,可以有效评估作用于FFA2R的配体。
{"title":"Development of a yeast-based sensor platform for evaluation of ligands recognized by the human free fatty acid 2 receptor.","authors":"Andrea Clausen Lind, Davi De Castro Gomes, Ricardo Bisquert, Jonas Mårtensson, Martina Sundqvist, Huamei Forsman, Claes Dahlgren, Florian David, Verena Siewers","doi":"10.1093/femsyr/foaf001","DOIUrl":"10.1093/femsyr/foaf001","url":null,"abstract":"<p><p>Yeast-based sensors have shown great applicability for deorphanization of G protein-coupled receptors (GPCRs) and screening of ligands targeting these. A GPCR of great interest is free fatty acid 2 receptor (FFA2R), for which short-chain fatty acids such as propionate and acetate are agonists. FFA2R regulates a wide array of downstream receptor signaling pathways in both adipose tissue and immune cells and has been recognized as a promising therapeutic target, having been implicated in several metabolic and inflammatory diseases. While research aiming to identify ligands recognized by FFA2R for translational applications is ongoing, screening is complicated by the complex regulatory and cell-specific responses mediated by the receptor. To simplify screening towards identification of novel ligands, heterologous platforms are valuable tools that offer efficient identification of ligand activity in the absence of regulatory mechanisms. Here, we present a yeast-based sensor designed to evaluate G protein α i1-mediated FFA2R signaling, with an assay time of 3 h. We verify this platform towards the natural agonists, propionate and acetate, and show applicability towards evaluation of synthetic agonists, antagonists, and allosteric agonists. As such, we believe that the developed yeast strain constitutes a promising screening platform for effective evaluation of ligands acting on FFA2R.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11781196/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143002734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Evolution and Hybridization Enhance the Fermentative Capacity of Wild Saccharomyces eubayanus Strains.
IF 2.4 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-01-29 DOI: 10.1093/femsyr/foaf004
Franco Vega-Macaya, Pablo Villarreal, Tomas A Peña, Valentina Abarca, Agustín A Cofré, Christian I Oporto, Wladimir Mardones, Roberto F Nespolo, Francisco A Cubillos

Lager beer is traditionally fermented using Saccharomyces pastorianus. However, the limited availability of lager yeast strains restricts the potential range of beer profiles. Recently, Saccharomyces eubayanus strains showed the potential to impart novel aromas to beer, with slower fermentation rates than commercial strains. Here, we applied experimental evolution to nine S. eubayanus strains using three different selective conditions to generate improved strains to fermentative environments. We observed environment-dependent fitness changes across strains, with ethanol-enriched media resulting in the greatest fitness improvement. We identified sub-telomeric genomic changes in a deficient fermentative strain underlying the greatest fitness improvement. Gene expression analysis and genome sequencing identified genes associated with oxidative stress, amino acid metabolism, sterol biosynthesis, and vacuole morphology underlying differences between evolved and the ancestral strain, revealing the cellular processes underlying fermentation improvement. A hybridization strategy between two evolved strains allowed us to expand the phenotypic space of the F2 segregants, obtaining strains with a 13.7% greater fermentative capacity relative to the best evolved parental strains. Our study highlights the potential of integrating experimental evolution and hybridization to enhance the fermentation capacity of wild yeast strains, offering strengthened solutions for industrial applications and highlighting the potential of Patagonian S. eubayanus in brewing.

{"title":"Experimental Evolution and Hybridization Enhance the Fermentative Capacity of Wild Saccharomyces eubayanus Strains.","authors":"Franco Vega-Macaya, Pablo Villarreal, Tomas A Peña, Valentina Abarca, Agustín A Cofré, Christian I Oporto, Wladimir Mardones, Roberto F Nespolo, Francisco A Cubillos","doi":"10.1093/femsyr/foaf004","DOIUrl":"https://doi.org/10.1093/femsyr/foaf004","url":null,"abstract":"<p><p>Lager beer is traditionally fermented using Saccharomyces pastorianus. However, the limited availability of lager yeast strains restricts the potential range of beer profiles. Recently, Saccharomyces eubayanus strains showed the potential to impart novel aromas to beer, with slower fermentation rates than commercial strains. Here, we applied experimental evolution to nine S. eubayanus strains using three different selective conditions to generate improved strains to fermentative environments. We observed environment-dependent fitness changes across strains, with ethanol-enriched media resulting in the greatest fitness improvement. We identified sub-telomeric genomic changes in a deficient fermentative strain underlying the greatest fitness improvement. Gene expression analysis and genome sequencing identified genes associated with oxidative stress, amino acid metabolism, sterol biosynthesis, and vacuole morphology underlying differences between evolved and the ancestral strain, revealing the cellular processes underlying fermentation improvement. A hybridization strategy between two evolved strains allowed us to expand the phenotypic space of the F2 segregants, obtaining strains with a 13.7% greater fermentative capacity relative to the best evolved parental strains. Our study highlights the potential of integrating experimental evolution and hybridization to enhance the fermentation capacity of wild yeast strains, offering strengthened solutions for industrial applications and highlighting the potential of Patagonian S. eubayanus in brewing.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143064865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphatidylserine synthase plays a critical role in the utilization of n-alkanes in the yeast Yarrowia lipolytica 磷脂酰丝氨酸合成酶在脂肪溶解酵母菌利用正构烷烃的过程中发挥关键作用
IF 3.2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-19 DOI: 10.1093/femsyr/foae030
Katsuro Matsuse, Mariho Hara, Ryo Iwama, Hiroyuki Horiuchi, Ryouichi Fukuda
The yeast Yarrowia lipolytica can assimilate n-alkane as a carbon and energy source. To elucidate the significance of phosphatidylserine (PS) in the utilization of n-alkane in Y. lipolytica, we investigated the role of the Y. lipolytica ortholog (PSS1) of Saccharomyces cerevisiae PSS1/CHO1, which encodes a PS synthase. The PSS1 deletion mutant (pss1Δ) of Y. lipolytica could not grow on minimal medium in the absence of ethanolamine and choline but grew when either ethanolamine or choline was supplied to synthesize phosphatidylethanolamine and phosphatidylcholine. The pss1Δ strain exhibited severe growth defects on media containing n-alkanes even in the presence of ethanolamine and choline. In the pss1Δ strain, the transcription of ALK1, which encodes a primary cytochrome P450 that catalyzes the hydroxylation of n-alkanes in the endoplasmic reticulum, was upregulated by n-alkane as in the wild-type strain. However, the production of functional P450 was not detected, as indicated by the absence of reduced CO-difference spectra in the pss1Δ strain. PS was undetectable in the lipid extracts of the pss1Δ strain. These results underscore the critical role of PSS1 in the biosynthesis of PS, which is essential for the production of functional P450 enzymes involved in n-alkane hydroxylation in Y. lipolytica.
脂肪溶解酵母菌(Yarrowia lipolytica)可以吸收正构烷烃作为碳和能量来源。为了阐明磷脂酰丝氨酸(PS)在脂溶酵母利用正构烷烃过程中的重要作用,我们研究了脂溶酵母 PSS1/CHO1 的直向同源物(PSS1)的作用。脂溶性酵母的 PSS1 缺失突变体(pss1Δ)在缺乏乙醇胺和胆碱的最小培养基上无法生长,但在提供乙醇胺或胆碱以合成磷脂酰乙醇胺和磷脂酰胆碱时却能生长。即使在乙醇胺和胆碱存在的情况下,pss1Δ菌株在含有正构烷烃的培养基上也表现出严重的生长缺陷。在pss1Δ菌株中,与野生型菌株一样,正烷烃会上调ALK1的转录,ALK1编码一种初级细胞色素P450,在内质网中催化正烷烃的羟基化。然而,在 pss1Δ 菌株中,功能性 P450 的产生并没有被检测到,这表现在 CO 差异光谱没有降低。在 pss1Δ 菌株的脂质提取物中检测不到 PS。这些结果凸显了 PSS1 在 PS 的生物合成中的关键作用,而 PS 的生物合成对于产生参与 Y. lipolytica 中正烷烃羟基化的功能性 P450 酶至关重要。
{"title":"Phosphatidylserine synthase plays a critical role in the utilization of n-alkanes in the yeast Yarrowia lipolytica","authors":"Katsuro Matsuse, Mariho Hara, Ryo Iwama, Hiroyuki Horiuchi, Ryouichi Fukuda","doi":"10.1093/femsyr/foae030","DOIUrl":"https://doi.org/10.1093/femsyr/foae030","url":null,"abstract":"The yeast Yarrowia lipolytica can assimilate n-alkane as a carbon and energy source. To elucidate the significance of phosphatidylserine (PS) in the utilization of n-alkane in Y. lipolytica, we investigated the role of the Y. lipolytica ortholog (PSS1) of Saccharomyces cerevisiae PSS1/CHO1, which encodes a PS synthase. The PSS1 deletion mutant (pss1Δ) of Y. lipolytica could not grow on minimal medium in the absence of ethanolamine and choline but grew when either ethanolamine or choline was supplied to synthesize phosphatidylethanolamine and phosphatidylcholine. The pss1Δ strain exhibited severe growth defects on media containing n-alkanes even in the presence of ethanolamine and choline. In the pss1Δ strain, the transcription of ALK1, which encodes a primary cytochrome P450 that catalyzes the hydroxylation of n-alkanes in the endoplasmic reticulum, was upregulated by n-alkane as in the wild-type strain. However, the production of functional P450 was not detected, as indicated by the absence of reduced CO-difference spectra in the pss1Δ strain. PS was undetectable in the lipid extracts of the pss1Δ strain. These results underscore the critical role of PSS1 in the biosynthesis of PS, which is essential for the production of functional P450 enzymes involved in n-alkane hydroxylation in Y. lipolytica.","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"92 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isolation and characterisation of Saccharomyces cerevisiae mutants with increased cell wall chitin using fluorescence-activated cell sorting 利用荧光激活细胞分选技术分离细胞壁几丁质增加的酿酒酵母突变体并确定其特征
IF 3.2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-12 DOI: 10.1093/femsyr/foae028
Lesiba Tyrone Chuene, Thulile Ndlovu, Debra Rossouw, Rene Kathleen Naidoo-Blassoples, Florian Franz Bauer
Yeast cell wall chitin has been shown to bind grape pathogenesis-related chitinases that are the primary cause of protein haze in wines suggesting that yeast cell walls may be applied for haze protection. Here we present a high throughput screen to identify yeast strains with high cell wall chitin using a reiterative enrichment strategy and Fluorescence-Activated Cell Sorting of cells labelled with either GFP-tagged chitinase or with Calcofluor White. To assess the validity of the strategy, we first used a pooled deletion strain library of Saccharomyces cerevisiae. The strategy enriched for deletion mutants with genes that had previously been described as having an impact on chitin levels. Genes that had not previously been linked to chitin biosynthesis or deposition were also identified. These genes are involved in cell wall maintenance and/or membrane trafficking functions. The strategy was then applied to a mutagenized population of a commercial wine yeast strain, Saccharomyces cerevisiae EC1118. Enriched mutant strains showed significantly higher cell wall chitin than the wild type and significantly reduced the activity of chitinases in synthetic model wine, suggesting that these strains may be able to reduce haze formation in wine.
酵母细胞壁几丁质已被证明能与葡萄致病相关的几丁质酶结合,而葡萄致病相关的几丁质酶是造成葡萄酒中蛋白烟雾的主要原因,这表明酵母细胞壁可用于烟雾防护。在此,我们介绍了一种高通量筛选方法,利用重复富集策略和荧光激活细胞分选技术,对标记有 GFP 标记几丁质酶或钙氟白的细胞进行筛选,以鉴定具有高细胞壁几丁质的酵母菌株。为了评估该策略的有效性,我们首先使用了一个集合的酿酒酵母缺失菌株库。该策略富集了以前被描述为对几丁质水平有影响的基因的缺失突变体。此外,还发现了以前与几丁质生物合成或沉积无关的基因。这些基因参与了细胞壁的维护和/或膜运输功能。然后将该策略应用于商业葡萄酒酵母菌株 Saccharomyces cerevisiae EC1118 的诱变群体。富集突变菌株的细胞壁几丁质含量明显高于野生型,并显著降低了合成模型酒中几丁质酶的活性,这表明这些菌株可能能够减少葡萄酒中雾霾的形成。
{"title":"Isolation and characterisation of Saccharomyces cerevisiae mutants with increased cell wall chitin using fluorescence-activated cell sorting","authors":"Lesiba Tyrone Chuene, Thulile Ndlovu, Debra Rossouw, Rene Kathleen Naidoo-Blassoples, Florian Franz Bauer","doi":"10.1093/femsyr/foae028","DOIUrl":"https://doi.org/10.1093/femsyr/foae028","url":null,"abstract":"Yeast cell wall chitin has been shown to bind grape pathogenesis-related chitinases that are the primary cause of protein haze in wines suggesting that yeast cell walls may be applied for haze protection. Here we present a high throughput screen to identify yeast strains with high cell wall chitin using a reiterative enrichment strategy and Fluorescence-Activated Cell Sorting of cells labelled with either GFP-tagged chitinase or with Calcofluor White. To assess the validity of the strategy, we first used a pooled deletion strain library of Saccharomyces cerevisiae. The strategy enriched for deletion mutants with genes that had previously been described as having an impact on chitin levels. Genes that had not previously been linked to chitin biosynthesis or deposition were also identified. These genes are involved in cell wall maintenance and/or membrane trafficking functions. The strategy was then applied to a mutagenized population of a commercial wine yeast strain, Saccharomyces cerevisiae EC1118. Enriched mutant strains showed significantly higher cell wall chitin than the wild type and significantly reduced the activity of chitinases in synthetic model wine, suggesting that these strains may be able to reduce haze formation in wine.","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"6 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The potential for scotch malt whisky flavour diversification by yeast 酵母使苏格兰麦芽威士忌风味多样化的潜力
IF 3.2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-04-30 DOI: 10.1093/femsyr/foae017
Martina Daute, Frances Jack, Graeme Walker
Scotch Whisky, a product of high importance to Scotland, has gained global approval for its distinctive qualities derived from the traditional production process which is defined in law. However, ongoing research continuously enhances Scotch Whisky production and is fostering a diversification of flavour profiles. To be classified as Scotch Whisky, the final spirit needs to retain the aroma and taste of “Scotch”. While each production step contributes significantly to whisky flavour—from malt preparation and mashing to fermentation, distillation, and maturation—the impact of yeast during fermentation is crucially important. Not only does the yeast convert the sugar to alcohol, it also produces important volatile compounds, for example esters and higher alcohols, that contribute to the final flavour profile of whisky. The yeast chosen for whisky fermentations can significantly influence whisky flavour, so the yeast strain employed is of high importance. This review explores the role of yeast in Scotch Whisky production and its influence on flavour diversification. Furthermore, an extensive examination of non-conventional yeasts employed in brewing and winemaking is undertaken to assess their potential suitability for adoption as Scotch Whisky yeast strains, followed by a review of methods for evaluating new yeast strains.
苏格兰威士忌是苏格兰的重要产品,其独特品质源于法律规定的传统生产工艺,已获得全球认可。然而,持续不断的研究不断提高了苏格兰威士忌的生产水平,并促进了口味的多样化。要被归类为苏格兰威士忌,最终的酒必须保留 "苏格兰 "的香气和味道。从麦芽制备和糖化到发酵、蒸馏和熟化,每个生产步骤都对威士忌的风味有重要影响,而酵母在发酵过程中的影响则至关重要。酵母不仅能将糖分转化为酒精,还能产生重要的挥发性化合物,如酯类和高级醇类,这些都有助于形成威士忌的最终风味。威士忌发酵所选用的酵母会极大地影响威士忌的风味,因此所选用的酵母菌株非常重要。本综述探讨了酵母在苏格兰威士忌生产中的作用及其对风味多样化的影响。此外,还对酿造和葡萄酒酿造中使用的非常规酵母进行了广泛的研究,以评估其作为苏格兰威士忌酵母菌株的潜在适用性,随后还对评估新酵母菌株的方法进行了综述。
{"title":"The potential for scotch malt whisky flavour diversification by yeast","authors":"Martina Daute, Frances Jack, Graeme Walker","doi":"10.1093/femsyr/foae017","DOIUrl":"https://doi.org/10.1093/femsyr/foae017","url":null,"abstract":"Scotch Whisky, a product of high importance to Scotland, has gained global approval for its distinctive qualities derived from the traditional production process which is defined in law. However, ongoing research continuously enhances Scotch Whisky production and is fostering a diversification of flavour profiles. To be classified as Scotch Whisky, the final spirit needs to retain the aroma and taste of “Scotch”. While each production step contributes significantly to whisky flavour—from malt preparation and mashing to fermentation, distillation, and maturation—the impact of yeast during fermentation is crucially important. Not only does the yeast convert the sugar to alcohol, it also produces important volatile compounds, for example esters and higher alcohols, that contribute to the final flavour profile of whisky. The yeast chosen for whisky fermentations can significantly influence whisky flavour, so the yeast strain employed is of high importance. This review explores the role of yeast in Scotch Whisky production and its influence on flavour diversification. Furthermore, an extensive examination of non-conventional yeasts employed in brewing and winemaking is undertaken to assess their potential suitability for adoption as Scotch Whisky yeast strains, followed by a review of methods for evaluating new yeast strains.","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"12 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140841263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nicotinic acid availability impacts redox cofactor metabolism in Saccharomyces cerevisiae during alcoholic fermentation 烟酸可用性影响酿酒酵母在酒精发酵过程中的氧化还原辅因子代谢
IF 3.2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-04-18 DOI: 10.1093/femsyr/foae015
James D Duncan, Mathabatha E Setati, Benoit Divol
Anaerobic alcoholic fermentation, particularly in high-sugar environments, presents metabolic challenges for yeasts. Crabtree-positive yeasts, including Saccharomyces cerevisiae, prefer fermentation even in the presence of oxygen. These yeasts rely on internal NAD+ recycling and extracellular assimilation of its precursor, nicotinic acid (vitamin B3), rather than de novo NAD+ production. Surprisingly, nicotinic acid assimilation is poorly characterised, even in S. cerevisiae. This study elucidated the timing of nicotinic acid uptake during grape juice-like fermentation and its impact on NAD(H) levels, the NAD+/NADH ratio, and metabolites produced. Complete uptake of extracellular nicotinic acid occurred pre-mid-exponential phase, thereafter small amounts of vitamin B3 were exported back into the medium. Suboptimal levels of nicotinic acid were correlated with slower fermentation and reduced biomass, disrupting redox balance and impeding NAD+ regeneration, thereby affecting metabolite production. Metabolic outcomes varied with nicotinic acid concentrations, linking NAD+ availability to fermentation efficiency. A model was proposed encompassing rapid nicotinic acid uptake, accumulation during cell proliferation, and recycling with limited vitamin B3 export. This research enhances the understanding of nicotinic acid uptake dynamics during grape juice-like fermentation. These insights contribute to advancing yeast metabolism research and have profound implications for the enhancement of biotechnological practices and the winemaking industry.
厌氧酒精发酵,尤其是在高糖环境中,给酵母菌的新陈代谢带来了挑战。包括酿酒酵母(Saccharomyces cerevisiae)在内的克拉布特里阳性酵母即使在有氧的情况下也喜欢发酵。这些酵母依靠内部 NAD+ 循环和细胞外同化其前体烟酸(维生素 B3),而不是从头生产 NAD+。令人惊讶的是,即使在麦角菌中,烟酸的同化作用也鲜为人知。本研究阐明了葡萄汁类发酵过程中烟酸吸收的时间及其对 NAD(H)水平、NAD+/NADH 比率和代谢产物产生的影响。细胞外烟酸的完全吸收发生在爆发期中期之前,之后少量维生素 B3 被输出回培养基中。烟酸水平不足与发酵速度减慢和生物量减少有关,会破坏氧化还原平衡,阻碍 NAD+ 的再生,从而影响代谢物的产生。代谢结果随烟酸浓度的变化而变化,从而将 NAD+ 的可用性与发酵效率联系起来。研究提出了一个模型,包括烟酸的快速吸收、细胞增殖过程中的积累以及维生素 B3 的有限输出循环。这项研究加深了人们对葡萄汁类发酵过程中烟酸摄取动态的理解。这些见解有助于推进酵母新陈代谢研究,对提高生物技术实践和酿酒业具有深远影响。
{"title":"Nicotinic acid availability impacts redox cofactor metabolism in Saccharomyces cerevisiae during alcoholic fermentation","authors":"James D Duncan, Mathabatha E Setati, Benoit Divol","doi":"10.1093/femsyr/foae015","DOIUrl":"https://doi.org/10.1093/femsyr/foae015","url":null,"abstract":"Anaerobic alcoholic fermentation, particularly in high-sugar environments, presents metabolic challenges for yeasts. Crabtree-positive yeasts, including Saccharomyces cerevisiae, prefer fermentation even in the presence of oxygen. These yeasts rely on internal NAD+ recycling and extracellular assimilation of its precursor, nicotinic acid (vitamin B3), rather than de novo NAD+ production. Surprisingly, nicotinic acid assimilation is poorly characterised, even in S. cerevisiae. This study elucidated the timing of nicotinic acid uptake during grape juice-like fermentation and its impact on NAD(H) levels, the NAD+/NADH ratio, and metabolites produced. Complete uptake of extracellular nicotinic acid occurred pre-mid-exponential phase, thereafter small amounts of vitamin B3 were exported back into the medium. Suboptimal levels of nicotinic acid were correlated with slower fermentation and reduced biomass, disrupting redox balance and impeding NAD+ regeneration, thereby affecting metabolite production. Metabolic outcomes varied with nicotinic acid concentrations, linking NAD+ availability to fermentation efficiency. A model was proposed encompassing rapid nicotinic acid uptake, accumulation during cell proliferation, and recycling with limited vitamin B3 export. This research enhances the understanding of nicotinic acid uptake dynamics during grape juice-like fermentation. These insights contribute to advancing yeast metabolism research and have profound implications for the enhancement of biotechnological practices and the winemaking industry.","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"23 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140624160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
FEMS yeast research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1