Transcranial Direct-Current Stimulation Over the Primary Motor Cortex and Cerebellum Improves Balance and Shooting Accuracy in Elite Ice Hockey Players.
Na Zhang, Michael A Nitsche, Yu Miao, Zheng Xiong, Carmelo Mario Vicario, Fengxue Qi
{"title":"Transcranial Direct-Current Stimulation Over the Primary Motor Cortex and Cerebellum Improves Balance and Shooting Accuracy in Elite Ice Hockey Players.","authors":"Na Zhang, Michael A Nitsche, Yu Miao, Zheng Xiong, Carmelo Mario Vicario, Fengxue Qi","doi":"10.1123/ijspp.2024-0041","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To investigate the effects of transcranial direct-current stimulation (tDCS) applied over the primary motor cortex (M1) and cerebellum on balance control and shooting accuracy in elite ice hockey players.</p><p><strong>Methods: </strong>Twenty-one elite ice hockey players underwent anodal tDCS over the M1 (a-tDCSM1), anodal tDCS over the cerebellum (a-tDCSCB), concurrent dual-site anodal tDCS over the M1 and the cerebellum (a-tDCSM1+CB), and sham stimulation (tDCSSHAM). Before and after receiving tDCS (2 mA for 15 min), participants completed an ice hockey shooting-accuracy test, Pro-Kin balance test (includes stance test and proprioceptive assessment), and Y-balance test in randomized order.</p><p><strong>Results: </strong>For static balance performance, the ellipse area in the 2-legged stance with eyes open and the 1-legged stance with the dominant leg significantly improved following a-tDCSM1, a-tDCSCB, and concurrent dual-site a-tDCSM1+CB, compared with tDCSSHAM (all P < .05, Cohen d = 0.64-1.06). In dynamic balance performance, the average trace error of the proprioceptive assessment and the composite score of the Y-balance test with the dominant leg significantly improved following a-tDCSM1 and concurrent dual-site a-tDCSM1+CB (all P < .05, Cohen d = 0.77-1.00). For the ice hockey shooting-accuracy test, shooting-accuracy while standing on the unstable platform significantly increased following a-tDCSM1 (P = .010, Cohen d = 0.81) and a-tDCSCB (P = .010, Cohen d = 0.92) compared with tDCSSHAM.</p><p><strong>Conclusion: </strong>tDCS could potentially be a valuable tool in enhancing static and dynamic balance and shooting accuracy on unstable platforms in elite ice hockey players.</p>","PeriodicalId":14295,"journal":{"name":"International journal of sports physiology and performance","volume":" ","pages":"1107-1114"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of sports physiology and performance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1123/ijspp.2024-0041","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To investigate the effects of transcranial direct-current stimulation (tDCS) applied over the primary motor cortex (M1) and cerebellum on balance control and shooting accuracy in elite ice hockey players.
Methods: Twenty-one elite ice hockey players underwent anodal tDCS over the M1 (a-tDCSM1), anodal tDCS over the cerebellum (a-tDCSCB), concurrent dual-site anodal tDCS over the M1 and the cerebellum (a-tDCSM1+CB), and sham stimulation (tDCSSHAM). Before and after receiving tDCS (2 mA for 15 min), participants completed an ice hockey shooting-accuracy test, Pro-Kin balance test (includes stance test and proprioceptive assessment), and Y-balance test in randomized order.
Results: For static balance performance, the ellipse area in the 2-legged stance with eyes open and the 1-legged stance with the dominant leg significantly improved following a-tDCSM1, a-tDCSCB, and concurrent dual-site a-tDCSM1+CB, compared with tDCSSHAM (all P < .05, Cohen d = 0.64-1.06). In dynamic balance performance, the average trace error of the proprioceptive assessment and the composite score of the Y-balance test with the dominant leg significantly improved following a-tDCSM1 and concurrent dual-site a-tDCSM1+CB (all P < .05, Cohen d = 0.77-1.00). For the ice hockey shooting-accuracy test, shooting-accuracy while standing on the unstable platform significantly increased following a-tDCSM1 (P = .010, Cohen d = 0.81) and a-tDCSCB (P = .010, Cohen d = 0.92) compared with tDCSSHAM.
Conclusion: tDCS could potentially be a valuable tool in enhancing static and dynamic balance and shooting accuracy on unstable platforms in elite ice hockey players.
期刊介绍:
The International Journal of Sports Physiology and Performance (IJSPP) focuses on sport physiology and performance and is dedicated to advancing the knowledge of sport and exercise physiologists, sport-performance researchers, and other sport scientists. The journal publishes authoritative peer-reviewed research in sport physiology and related disciplines, with an emphasis on work having direct practical applications in enhancing sport performance in sport physiology and related disciplines. IJSPP publishes 10 issues per year: January, February, March, April, May, July, August, September, October, and November.