Short communication: Differential expression of piwi1 and piwi2 genes in tissues of tambacu and zebrafish: A possible relationship with the indeterminate muscle growth
Érika Stefani Perez , Tassiana Gutierrez de Paula , Bruna Tereza Thomazini Zanella , Leonardo Nazário de Moraes , Bruno Oliveira da Silva Duran , Maeli Dal-Pai-Silva
{"title":"Short communication: Differential expression of piwi1 and piwi2 genes in tissues of tambacu and zebrafish: A possible relationship with the indeterminate muscle growth","authors":"Érika Stefani Perez , Tassiana Gutierrez de Paula , Bruna Tereza Thomazini Zanella , Leonardo Nazário de Moraes , Bruno Oliveira da Silva Duran , Maeli Dal-Pai-Silva","doi":"10.1016/j.cbpa.2024.111730","DOIUrl":null,"url":null,"abstract":"<div><p>Fish skeletal muscle is a component of the human diet, and understanding the mechanisms that control muscle growth can contribute to improving production in this sector and benefits the human health. In this sense, fish such as tambacu can represent a valuable source for exploring muscle growth regulators due to the indeterminate muscle growth pattern. In this context, the genes responsible for the indeterminate and determinate muscle growth pattern of fish are little explored, with <em>piwi</em> genes being possible candidates involved with these growth patterns. Piwi genes are associated with the proliferation and self-renewal of germ cells, and there are descriptions of these same functions in somatic cells from different tissues. However, little is known about the function of these genes in fish somatic cells. Considering this, our objective was to analyze the expression pattern of <em>piwi</em> 1 and 2 genes in cardiac muscle, skeletal muscle, liver, and gonad of zebrafish (species with determinate growth) and tambacu (species with indeterminate growth). We observed a distinct expression of <em>piwi1</em> and <em>piwi2</em> between tambacu and zebrafish, with both genes more expressed in tambacu in all tissues evaluated. <em>Piwi</em> genes can represent potential candidates involved with indeterminate muscle growth control.</p></div>","PeriodicalId":55237,"journal":{"name":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","volume":"297 ","pages":"Article 111730"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1095643324001570","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fish skeletal muscle is a component of the human diet, and understanding the mechanisms that control muscle growth can contribute to improving production in this sector and benefits the human health. In this sense, fish such as tambacu can represent a valuable source for exploring muscle growth regulators due to the indeterminate muscle growth pattern. In this context, the genes responsible for the indeterminate and determinate muscle growth pattern of fish are little explored, with piwi genes being possible candidates involved with these growth patterns. Piwi genes are associated with the proliferation and self-renewal of germ cells, and there are descriptions of these same functions in somatic cells from different tissues. However, little is known about the function of these genes in fish somatic cells. Considering this, our objective was to analyze the expression pattern of piwi 1 and 2 genes in cardiac muscle, skeletal muscle, liver, and gonad of zebrafish (species with determinate growth) and tambacu (species with indeterminate growth). We observed a distinct expression of piwi1 and piwi2 between tambacu and zebrafish, with both genes more expressed in tambacu in all tissues evaluated. Piwi genes can represent potential candidates involved with indeterminate muscle growth control.
期刊介绍:
Part A: Molecular & Integrative Physiology of Comparative Biochemistry and Physiology. This journal covers molecular, cellular, integrative, and ecological physiology. Topics include bioenergetics, circulation, development, excretion, ion regulation, endocrinology, neurobiology, nutrition, respiration, and thermal biology. Study on regulatory mechanisms at any level of organization such as signal transduction and cellular interaction and control of behavior are also published.