Nonlinear model predictive control of a conductance-based neuron model via data-driven forecasting.

Christof Fehrman, C Daniel Meliza
{"title":"Nonlinear model predictive control of a conductance-based neuron model via data-driven forecasting.","authors":"Christof Fehrman, C Daniel Meliza","doi":"10.1088/1741-2552/ad731f","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Precise control of neural systems is essential to experimental investigations of how the brain controls behavior and holds the potential for therapeutic manipulations to correct aberrant network states. Model predictive control, which employs a dynamical model of the system to find optimal control inputs, has promise for dealing with the nonlinear dynamics, high levels of exogenous noise, and limited information about unmeasured states and parameters that are common in a wide range of neural systems. However, the challenge still remains of selecting the right model, constraining its parameters, and synchronizing to the neural system.<i>Approach</i>. As a proof of principle, we used recent advances in data-driven forecasting to construct a nonlinear machine-learning model of a Hodgkin-Huxley type neuron when only the membrane voltage is observable and there are an unknown number of intrinsic currents.<i>Main Results</i>. We show that this approach is able to learn the dynamics of different neuron types and can be used with model predictive control (MPC) to force the neuron to engage in arbitrary, researcher-defined spiking behaviors.<i>Significance.</i>To the best of our knowledge, this is the first application of nonlinear MPC of a conductance-based model where there is only realistically limited information about unobservable states and parameters.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483466/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ad731f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective. Precise control of neural systems is essential to experimental investigations of how the brain controls behavior and holds the potential for therapeutic manipulations to correct aberrant network states. Model predictive control, which employs a dynamical model of the system to find optimal control inputs, has promise for dealing with the nonlinear dynamics, high levels of exogenous noise, and limited information about unmeasured states and parameters that are common in a wide range of neural systems. However, the challenge still remains of selecting the right model, constraining its parameters, and synchronizing to the neural system.Approach. As a proof of principle, we used recent advances in data-driven forecasting to construct a nonlinear machine-learning model of a Hodgkin-Huxley type neuron when only the membrane voltage is observable and there are an unknown number of intrinsic currents.Main Results. We show that this approach is able to learn the dynamics of different neuron types and can be used with model predictive control (MPC) to force the neuron to engage in arbitrary, researcher-defined spiking behaviors.Significance.To the best of our knowledge, this is the first application of nonlinear MPC of a conductance-based model where there is only realistically limited information about unobservable states and parameters.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过数据驱动预测对基于传导的神经元模型进行非线性模型预测控制。
目的:神经系统的精确控制对于大脑如何控制行为的实验研究至关重要,同时也为纠正异常网络状态的治疗操作提供了可能性。模型预测控制利用系统的动力学模型来寻找最佳控制输入,有望处理非线性动力学、高水平的外源噪声以及有关未测量状态和参数的有限信息等问题,而这些问题在各种神经系统中十分常见。然而,如何选择合适的模型、限制其参数并与神经系统同步仍然是一个挑战:作为原理验证,我们利用数据驱动预测的最新进展,构建了一个霍奇金-赫胥黎型神经元的非线性机器学习模型:我们证明了这种方法能够学习不同神经元类型的动态,并能与 MPC 配合使用,迫使神经元参与研究人员定义的任意尖峰行为:据我们所知,这是基于电导模型的非线性 MPC 的首次应用,在这种模型中,不可观测的状态和参数信息非常有限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SoftBoMI: a non-invasive wearable body-machine interface for mapping movement of shoulder to commands. Anchoring temporal convolutional networks for epileptic seizure prediction. Wide-angle simulated artificial vision enhances spatial navigation and object interaction in a naturalistic environment. High-quality multimodal MRI with simultaneous EEG using conductive ink and polymer-thick film nets. Task-oriented EEG denoising generative adversarial network for enhancing SSVEP-BCI performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1