{"title":"Tetrakis(trimethylsilyl)silane as a standard compound for fast spinning Solid-State NMR experiments","authors":"","doi":"10.1016/j.jmr.2024.107747","DOIUrl":null,"url":null,"abstract":"<div><p>The development of magic angle spinning (MAS) at rates ranging from 30 kHz to greater than 100 kHz has substantially advanced solid-state nuclear magnetic resonance (SSNMR) spectroscopy <sup>1</sup>H-detection methods. The small rotors required for such MAS rates have a limited sample volume and low <sup>13</sup>C-detection sensitivity, rendering the traditional set of standard compounds for SSNMR insufficient or highly inconvenient for shimming and magic-angle calibration. Additionally, the reproducibility of magic angle setting, chemical shift referencing, and probe position can be especially critical for SSNMR experiments at high fields. These conditions suggest the need for a high signal-to-noise ratio (SNR) <sup>1</sup>H-detection standard compound, which is preferably multi-purpose, to simplify instrument set up for ultra-fast MAS SSNMR instruments at high magnetic fields. In this study, we present the results for setting magic angle and shimming using tetrakis(trimethylsilyl)silane (TTMSS, or TKS), a tetramethylsilane (TMS) analogue, at near 40 kHz and demonstrate that we can achieve favorable results in less time but with equal or superior precision as traditional KBr and adamantane standards. The high SNR and TMS-like chemical shift of TKS also opens the possibilities for using TKS as an internal standard with biological samples. A single rotor containing a four-component mixture of TKS, adamantane, uniformly <sup>13</sup>C, <sup>15</sup>N-labeled N-acetyl valine and KBr was used to perform a complete configuration and calibration of a SSNMR probe without sample changes. We anticipate TKS as a standard compound to be especially effective at very high MAS conditions and to greatly simplify the instrument set up for high and ultra-high field SSNMR instruments.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780724001319","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The development of magic angle spinning (MAS) at rates ranging from 30 kHz to greater than 100 kHz has substantially advanced solid-state nuclear magnetic resonance (SSNMR) spectroscopy 1H-detection methods. The small rotors required for such MAS rates have a limited sample volume and low 13C-detection sensitivity, rendering the traditional set of standard compounds for SSNMR insufficient or highly inconvenient for shimming and magic-angle calibration. Additionally, the reproducibility of magic angle setting, chemical shift referencing, and probe position can be especially critical for SSNMR experiments at high fields. These conditions suggest the need for a high signal-to-noise ratio (SNR) 1H-detection standard compound, which is preferably multi-purpose, to simplify instrument set up for ultra-fast MAS SSNMR instruments at high magnetic fields. In this study, we present the results for setting magic angle and shimming using tetrakis(trimethylsilyl)silane (TTMSS, or TKS), a tetramethylsilane (TMS) analogue, at near 40 kHz and demonstrate that we can achieve favorable results in less time but with equal or superior precision as traditional KBr and adamantane standards. The high SNR and TMS-like chemical shift of TKS also opens the possibilities for using TKS as an internal standard with biological samples. A single rotor containing a four-component mixture of TKS, adamantane, uniformly 13C, 15N-labeled N-acetyl valine and KBr was used to perform a complete configuration and calibration of a SSNMR probe without sample changes. We anticipate TKS as a standard compound to be especially effective at very high MAS conditions and to greatly simplify the instrument set up for high and ultra-high field SSNMR instruments.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.