Buoyancy-driven nano-suspension subject to interstitial solid/nanofluid heat transfer coefficient: Role of local thermal non-equilibrium (LTNE)

IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of the Taiwan Institute of Chemical Engineers Pub Date : 2024-08-24 DOI:10.1016/j.jtice.2024.105702
Marouan Kouki , Amjad Ali Pasha , M.K. Nayak , Salem Algarni , Talal Alqahtani , Kashif Irshad
{"title":"Buoyancy-driven nano-suspension subject to interstitial solid/nanofluid heat transfer coefficient: Role of local thermal non-equilibrium (LTNE)","authors":"Marouan Kouki ,&nbsp;Amjad Ali Pasha ,&nbsp;M.K. Nayak ,&nbsp;Salem Algarni ,&nbsp;Talal Alqahtani ,&nbsp;Kashif Irshad","doi":"10.1016/j.jtice.2024.105702","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Because of the prominent temperature discrepancy between fluid and solid in porous material, local thermal equilibrium (LTE) is not suitable in case of high-conductivity foams and electronic equipment. In view of above situation, Darcy-Brinkman-Forchheimer model subject to local thermal non-equilibrium (LTNE) is implemented. LTNE technique finds real world applications include groundwater pollution, geothermal extraction, microwave heating, industrial separation process, and transpiration cooling featuring with porous structure. The present study aims at the investigation of the entropy and hydrothermal characteristics of buoyancy-driven TiO<sub>2</sub>-H<sub>2</sub>O nanofluid inside a cross-shaped domain embodying two hot and cold rings influenced by LTNE.</p></div><div><h3>Methods</h3><p>Finite element method (FEM) has been considered to solve the dimensionless form of governing equations.</p></div><div><h3>Significant findings</h3><p>Amplification of interstitial solid/nanofluid heat transfer coefficient accounts for the intensification of streamlines, velocities, and diminution of isothermal lines in both nanofluid and solid matrix phases under the influence of LTNE. Strengthening of medium porosity whittles down entropy due to thermal effects in both nanofluid and solid phases, and that ameliorates entropy due to fluid friction and porous medium irreversibilities. Local and average Nusselt numbers in nanofluid phase reduce by 29.31 %, 20.72 %, 17.16 %, and 14.78 % while that in solid phase decays by 13.18 %, 7.63 %, 4.9 %, and 2.8 % for rise in εfrom 0.1 to 0.3, 0.3 to 0.5, 0.5 to 0.7, and 0.7 to 0.9, respectively. Introduction of Darcy-Brinkman-Forchheimer model subject to LTNE yielded better results in hydrothermal behavior of TiO<sub>2</sub>-H<sub>2</sub>O nanofluid inside a cross-shaped domain emplacing two hot and cold rings than earlier published results.</p></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"165 ","pages":"Article 105702"},"PeriodicalIF":5.5000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107024003602","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Because of the prominent temperature discrepancy between fluid and solid in porous material, local thermal equilibrium (LTE) is not suitable in case of high-conductivity foams and electronic equipment. In view of above situation, Darcy-Brinkman-Forchheimer model subject to local thermal non-equilibrium (LTNE) is implemented. LTNE technique finds real world applications include groundwater pollution, geothermal extraction, microwave heating, industrial separation process, and transpiration cooling featuring with porous structure. The present study aims at the investigation of the entropy and hydrothermal characteristics of buoyancy-driven TiO2-H2O nanofluid inside a cross-shaped domain embodying two hot and cold rings influenced by LTNE.

Methods

Finite element method (FEM) has been considered to solve the dimensionless form of governing equations.

Significant findings

Amplification of interstitial solid/nanofluid heat transfer coefficient accounts for the intensification of streamlines, velocities, and diminution of isothermal lines in both nanofluid and solid matrix phases under the influence of LTNE. Strengthening of medium porosity whittles down entropy due to thermal effects in both nanofluid and solid phases, and that ameliorates entropy due to fluid friction and porous medium irreversibilities. Local and average Nusselt numbers in nanofluid phase reduce by 29.31 %, 20.72 %, 17.16 %, and 14.78 % while that in solid phase decays by 13.18 %, 7.63 %, 4.9 %, and 2.8 % for rise in εfrom 0.1 to 0.3, 0.3 to 0.5, 0.5 to 0.7, and 0.7 to 0.9, respectively. Introduction of Darcy-Brinkman-Forchheimer model subject to LTNE yielded better results in hydrothermal behavior of TiO2-H2O nanofluid inside a cross-shaped domain emplacing two hot and cold rings than earlier published results.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
受间隙固体/纳米流体传热系数影响的浮力驱动纳米悬浮:局部热不平衡 (LTNE) 的作用
背景由于多孔材料中流体和固体之间的温度差很大,局部热平衡(LTE)不适合高导电性泡沫和电子设备。有鉴于此,达西-布林克曼-福克海默模型(Darcy-Brinkman-Forchheimer model)采用了局部热非平衡态(LTNE)技术。LTNE 技术在现实世界中的应用包括地下水污染、地热提取、微波加热、工业分离过程以及以多孔结构为特征的蒸发冷却。本研究旨在探讨受 LTNE 影响,浮力驱动的 TiO2-H2O 纳米流体在包含两个冷热环的十字形域内的熵和水热特性。重要发现间隙固体/纳米流体传热系数的增大解释了在 LTNE 影响下,纳米流体和固体基质相的流线、速度和等温线的减小。介质孔隙率的增加降低了纳米流体和固相中热效应引起的熵,同时改善了流体摩擦和多孔介质不可逆性引起的熵。当ε从 0.1 升至 0.3、0.3 升至 0.5、0.5 升至 0.7 和 0.7 升至 0.9 时,纳米流体相中的局部和平均努塞尔特数分别降低了 29.31 %、20.72 %、17.16 % 和 14.78 %,而固相的努塞尔特数则分别降低了 13.18 %、7.63 %、4.9 % 和 2.8 %。在 LTNE 条件下引入达西-布林克曼-福克海默模型后,TiO2-H2O 纳米流体在放置两个冷热环的十字形畴内的热液行为结果优于之前发表的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
14.00%
发文量
362
审稿时长
35 days
期刊介绍: Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.
期刊最新文献
Cellulose nanocrystals/zeolitic imidazolate framework-L (CNCs/ZIF-L) composites for loading and diffusion-controlled release of doxorubicin hydrochloride Optimization and sensitivity analysis of magnetic fields on nanofluid flow on a wedge with machine learning techniques with joule heating, radiation and viscous dissipation Biochar from residues of anaerobic digestion and its application as electrocatalyst in Zn–air batteries Decoration of mesoporous hydroxyapatite nanorods by CdSe and PtO nanoparticles for enhanced photocatalytic oxidation of antibiotic pollutant in water Fabrication of tannic acid-(3-amino)propyltriethoxysilane with zwitterionic carbon quantum dots coating on cellulose acetate tubular membrane for oil-water emulsion separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1