Getting to the root of the problem: Soil carbon and microbial responses to root inputs within a buried paleosol along an eroding hillslope in southwestern Nebraska, USA
Abbygail R. McMurtry , Chase S. Kasmerchak , Elliot A. Vaughan , Manisha Dolui , Laura M. Phillips , Carsten W. Mueller , Jennifer Pett-Ridge , Asmeret Asefaw Berhe , Joseph A. Mason , Erika Marín-Spiotta , Marie-Anne de Graaff
{"title":"Getting to the root of the problem: Soil carbon and microbial responses to root inputs within a buried paleosol along an eroding hillslope in southwestern Nebraska, USA","authors":"Abbygail R. McMurtry , Chase S. Kasmerchak , Elliot A. Vaughan , Manisha Dolui , Laura M. Phillips , Carsten W. Mueller , Jennifer Pett-Ridge , Asmeret Asefaw Berhe , Joseph A. Mason , Erika Marín-Spiotta , Marie-Anne de Graaff","doi":"10.1016/j.soilbio.2024.109549","DOIUrl":null,"url":null,"abstract":"<div><p>Large quantities of soil carbon (C) can persist within paleosols for millennia due to burial and subsequent isolation from plant-derived inputs, atmospheric conditions, and microbial activity at the modern surface. Erosion exposes buried soils to modern root-derived C influx via root exudation and root turnover, thus stimulating microbial activity leading to SOC decomposition and accumulation through organo-mineral stabilization of modern C. With this study we aim to quantify how modern root-derived C inputs impact paleosol C decomposition and stabilization across varying degrees of isolation from modern surface conditions in southwestern Nebraska, USA, where hillslope erosion is bringing a buried Late-Pleistocene-early Holocene paleosol (the “Brady Soil”) closer to the modern surface. We collected Brady Soil samples from 0.2 m, 0.4 m, and 1.2 m below the modern surface and conducted two lab-based incubations. Soils were amended with either (1) a lab-synthesized mixture of low molecular weight compounds (12 atom% <sup>13</sup>C), or (2) <sup>13</sup>C enriched root residues (92 atom% <sup>13</sup>C), in 30-day and 240-day incubation experiments, respectively. We determined microbial responses to synthetic root exudates and residues by partitioning the <sup>13</sup>C label from Brady Soil C, including measurements of total, root, and primed C respiration, microbial biomass C (MBC), microbial C use efficiency (CUE). To assess the capacity of isolated paleosols to accrue modern plant C, we used Nano-scale Secondary Ion Mass Spectrometry imaging. We found that: (1) adding root-derived C inputs primed Brady Soil C across all depths, and was mediated by depth and composition of root additions; (2) root-derived C inputs stimulated microbial biomass C (MBC) growth similarly across depths, but the magnitude of CUE and MBC varied by chemistry of root-derived additions; (3) new particulate organic matter was incorporated into mineral-associated pools over time; (4) material from the added root residues was found in association with bacterial cells and fungal hyphae as well as with soil aggregate and mineral surfaces. Our study shows that paleosols defy expectations of C content and reactivity with depth, and changes in land cover and climate will expose buried paleosols to modern surface conditions, increasing respired C. This work highlights the importance of evaluating the role resurfacing buried soils through landscape change plays in C cycle feedbacks to the climate system.</p></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"198 ","pages":"Article 109549"},"PeriodicalIF":9.8000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Biology & Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038071724002384","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Large quantities of soil carbon (C) can persist within paleosols for millennia due to burial and subsequent isolation from plant-derived inputs, atmospheric conditions, and microbial activity at the modern surface. Erosion exposes buried soils to modern root-derived C influx via root exudation and root turnover, thus stimulating microbial activity leading to SOC decomposition and accumulation through organo-mineral stabilization of modern C. With this study we aim to quantify how modern root-derived C inputs impact paleosol C decomposition and stabilization across varying degrees of isolation from modern surface conditions in southwestern Nebraska, USA, where hillslope erosion is bringing a buried Late-Pleistocene-early Holocene paleosol (the “Brady Soil”) closer to the modern surface. We collected Brady Soil samples from 0.2 m, 0.4 m, and 1.2 m below the modern surface and conducted two lab-based incubations. Soils were amended with either (1) a lab-synthesized mixture of low molecular weight compounds (12 atom% 13C), or (2) 13C enriched root residues (92 atom% 13C), in 30-day and 240-day incubation experiments, respectively. We determined microbial responses to synthetic root exudates and residues by partitioning the 13C label from Brady Soil C, including measurements of total, root, and primed C respiration, microbial biomass C (MBC), microbial C use efficiency (CUE). To assess the capacity of isolated paleosols to accrue modern plant C, we used Nano-scale Secondary Ion Mass Spectrometry imaging. We found that: (1) adding root-derived C inputs primed Brady Soil C across all depths, and was mediated by depth and composition of root additions; (2) root-derived C inputs stimulated microbial biomass C (MBC) growth similarly across depths, but the magnitude of CUE and MBC varied by chemistry of root-derived additions; (3) new particulate organic matter was incorporated into mineral-associated pools over time; (4) material from the added root residues was found in association with bacterial cells and fungal hyphae as well as with soil aggregate and mineral surfaces. Our study shows that paleosols defy expectations of C content and reactivity with depth, and changes in land cover and climate will expose buried paleosols to modern surface conditions, increasing respired C. This work highlights the importance of evaluating the role resurfacing buried soils through landscape change plays in C cycle feedbacks to the climate system.
期刊介绍:
Soil Biology & Biochemistry publishes original research articles of international significance focusing on biological processes in soil and their applications to soil and environmental quality. Major topics include the ecology and biochemical processes of soil organisms, their effects on the environment, and interactions with plants. The journal also welcomes state-of-the-art reviews and discussions on contemporary research in soil biology and biochemistry.