Autoencoder latent space sensitivity to material structure in convergent-beam low energy electron diffraction

IF 2.1 3区 工程技术 Q2 MICROSCOPY Ultramicroscopy Pub Date : 2024-08-06 DOI:10.1016/j.ultramic.2024.114021
M. Ivanov, J. Pereiro
{"title":"Autoencoder latent space sensitivity to material structure in convergent-beam low energy electron diffraction","authors":"M. Ivanov,&nbsp;J. Pereiro","doi":"10.1016/j.ultramic.2024.114021","DOIUrl":null,"url":null,"abstract":"<div><p>The convergent-beam low energy electron diffraction technique has been proposed as a novel method to gather local structural and electronic information from crystalline surfaces during low-energy electron microscopy. However, the approach suffers from high complexity of the resulting diffraction patterns. We show that Convolutional Autoencoders trained on CBLEED patterns achieve a highly structured latent space. The latent space is then used to estimate structural parameters with sub-angstrom accuracy. The low complexity of the neural networks enables real time application of the approach during experiments with low latency.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"266 ","pages":"Article 114021"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304399124001001/pdfft?md5=2b44dc788be0de80f016aef2e3c8c553&pid=1-s2.0-S0304399124001001-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399124001001","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

The convergent-beam low energy electron diffraction technique has been proposed as a novel method to gather local structural and electronic information from crystalline surfaces during low-energy electron microscopy. However, the approach suffers from high complexity of the resulting diffraction patterns. We show that Convolutional Autoencoders trained on CBLEED patterns achieve a highly structured latent space. The latent space is then used to estimate structural parameters with sub-angstrom accuracy. The low complexity of the neural networks enables real time application of the approach during experiments with low latency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
汇聚束低能电子衍射中自动编码器潜空间对材料结构的敏感性
汇聚束低能电子衍射技术是在低能电子显微镜下收集晶体表面局部结构和电子信息的一种新方法。然而,这种方法所产生的衍射图样复杂度较高。我们的研究表明,在 CBLEED 图案上训练的卷积自动编码器可以获得高度结构化的潜在空间。然后利用潜空间以亚埃级精度估算结构参数。神经网络的低复杂性使该方法能够在低延迟实验中实时应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ultramicroscopy
Ultramicroscopy 工程技术-显微镜技术
CiteScore
4.60
自引率
13.60%
发文量
117
审稿时长
5.3 months
期刊介绍: Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.
期刊最新文献
Editorial Board Chinese knot inspired isotropic linear scanning method for improved imaging performance in AFM Toward quantitative thermoelectric characterization of (nano)materials by in-situ transmission electron microscopy New experimental methodology for determining the second crossover energy in insulators under stationary e-irradiation in a SEM Beyond the random phase approximation (RPA): First principles calculation of the valence EELS spectrum for KBr including local field, quasiparticle, excitonic and spin orbit coupling effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1