{"title":"Uncovering all possible dislocation locks in face-centered cubic materials","authors":"D. Bajaj, D.L. Chen","doi":"10.1016/j.ijplas.2024.104101","DOIUrl":null,"url":null,"abstract":"<div><p>Dislocation reactions and locks play an important role in the plastic deformation and mechanical behavior of crystalline materials. Various types of dislocation locks in face-centered cubic (FCC) materials have been reported in the literature pertaining to material-specific molecular-dynamic simulations and high-resolution transmission electron microscopy observations. However, it is unknown how many dislocation locks are possible, and how immobile all the dislocation locks are, with respect to each other. Here we present a discrete mathematics-based approach to reveal all possible dislocation locks in the FCC crystal structure. Totally eight types of dislocation locks are uncovered, resulting from all possible reactions of mobile/glissile (namely, perfect and Shockley partial) dislocations with (a) non-coplanar Burgers vectors which reside on two slip planes intersecting at both obtuse and acute angles and (b) coplanar Burgers vectors. We redefine the degree of dislocation lock immobility based on misorientations between non-close-packed lock planes and close-packed {111} slip planes. The subsequently derived sequences for the dislocation lock immobility and formation tendency are rationalized by the reported experimental and dislocation-dynamics simulation results.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"181 ","pages":"Article 104101"},"PeriodicalIF":9.4000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0749641924002286/pdfft?md5=0accc2ba26804811b296eb37262a970a&pid=1-s2.0-S0749641924002286-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924002286","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Dislocation reactions and locks play an important role in the plastic deformation and mechanical behavior of crystalline materials. Various types of dislocation locks in face-centered cubic (FCC) materials have been reported in the literature pertaining to material-specific molecular-dynamic simulations and high-resolution transmission electron microscopy observations. However, it is unknown how many dislocation locks are possible, and how immobile all the dislocation locks are, with respect to each other. Here we present a discrete mathematics-based approach to reveal all possible dislocation locks in the FCC crystal structure. Totally eight types of dislocation locks are uncovered, resulting from all possible reactions of mobile/glissile (namely, perfect and Shockley partial) dislocations with (a) non-coplanar Burgers vectors which reside on two slip planes intersecting at both obtuse and acute angles and (b) coplanar Burgers vectors. We redefine the degree of dislocation lock immobility based on misorientations between non-close-packed lock planes and close-packed {111} slip planes. The subsequently derived sequences for the dislocation lock immobility and formation tendency are rationalized by the reported experimental and dislocation-dynamics simulation results.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.