首页 > 最新文献

International Journal of Plasticity最新文献

英文 中文
An anisotropic thermo-mechanically coupled constitutive model for glass fiber reinforced polyamide 6 including crystallization kinetics 包括结晶动力学在内的玻璃纤维增强聚酰胺 6 各向异性热机械耦合结构模型
IF 9.8 1区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2025-04-22 DOI: 10.1016/j.ijplas.2025.104341
Marie-Christine Reuvers, Christopher Dannenberg, Sameer Kulkarni, Michael Johlitz, Alexander Lion, Stefanie Reese, Tim Brepols
In order to achieve process stability in the industrial thermoforming of fiber reinforced polymers (FRPs), typically, cost- and time-intensive trial-and-error-processes are required. The experimental boundary conditions, as well as the material composition and component design optimization, are highly dependent on material phenomena related to various material scales and constituents. It is therefore necessary to develop finite element constitutive models that are validated against experimental results and incorporate various material phenomena in order to reduce the experimental effort and evaluate the composite’s performance with reliable predictions. In this work, an existing thermo-mechanically coupled constitutive model for polyamide 6 is extended in a thermodynamically consistent manner to represent the anisotropic composite behavior, including anisotropic conduction, thermal expansion as well as internal heat generation associated with irreversible processes. Furthermore, the crystallization process is incorporated using experimental standard (S-DSC) and flash (F-DSC) differential scanning calorimetry results. The thermal and mechanical model parameters of the homogenized macroscopic material formulation are identified and the model response is successfully validated with a data base comprising both experimental and virtual results. Finally, the model capabilities are assessed in several thermo-mechanical structural computations, including a 3D thermoforming example in comparison with experimental results. In particular, the influence of the anisotropy on material self-heating, thermal expansion and the resulting crystalline state is investigated, demonstrating the potential of this new approach to efficiently and accurately predict FRPs in the future. Our source code, data, and exemplary input files are available under https://doi.org/10.5281/zenodo.15052983.
{"title":"An anisotropic thermo-mechanically coupled constitutive model for glass fiber reinforced polyamide 6 including crystallization kinetics","authors":"Marie-Christine Reuvers, Christopher Dannenberg, Sameer Kulkarni, Michael Johlitz, Alexander Lion, Stefanie Reese, Tim Brepols","doi":"10.1016/j.ijplas.2025.104341","DOIUrl":"https://doi.org/10.1016/j.ijplas.2025.104341","url":null,"abstract":"In order to achieve process stability in the industrial thermoforming of fiber reinforced polymers (FRPs), typically, cost- and time-intensive trial-and-error-processes are required. The experimental boundary conditions, as well as the material composition and component design optimization, are highly dependent on material phenomena related to various material scales and constituents. It is therefore necessary to develop finite element constitutive models that are validated against experimental results and incorporate various material phenomena in order to reduce the experimental effort and evaluate the composite’s performance with reliable predictions. In this work, an existing thermo-mechanically coupled constitutive model for polyamide 6 is extended in a thermodynamically consistent manner to represent the anisotropic composite behavior, including anisotropic conduction, thermal expansion as well as internal heat generation associated with irreversible processes. Furthermore, the crystallization process is incorporated using experimental standard (S-DSC) and flash (F-DSC) differential scanning calorimetry results. The thermal and mechanical model parameters of the homogenized macroscopic material formulation are identified and the model response is successfully validated with a data base comprising both experimental and virtual results. Finally, the model capabilities are assessed in several thermo-mechanical structural computations, including a 3D thermoforming example in comparison with experimental results. In particular, the influence of the anisotropy on material self-heating, thermal expansion and the resulting crystalline state is investigated, demonstrating the potential of this new approach to efficiently and accurately predict FRPs in the future. Our source code, data, and exemplary input files are available under <span><span>https://doi.org/10.5281/zenodo.15052983</span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span>.","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"112 1","pages":""},"PeriodicalIF":9.8,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143862280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-strong and ductile magnesium alloy enabled by ultrafine grains with nano-spacing solute-enriched planar defects
IF 9.8 1区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2025-04-21 DOI: 10.1016/j.ijplas.2025.104348
Zhi Zhang, Jinshu Xie, Jinghuai Zhang, Ruizhi Wu, Jian Wang, Xu-Sheng Yang
Mg96.3Ho1.6Y1.2Zn0.8Zr0.1 (at.%) alloy with sub-micron ultrafine grains containing nano-spacing solute-enriched planar defects is developed to exhibit high strengths (yield strength = ∼ 382 MPa and ultimate tensile strength = ∼ 426 MPa) and good ductility (fracture elongation = 19%), compared to the as-homogenized counterpart (yield strength = ∼ 160 MPa, ultimate tensile strength = ∼ 225 MPa, and fracture elongation = 7.5%). Ultrafine grains with an average grain size of ∼ 940 nm is attained via particle-stimulated nucleation mechanism induced by the second Mg12(Ho,Y)Zn phase during hot extrusion. A substantial number of ultrafine grains are formed surrounding these second-phase grains. The addition of Ho/Y/Zn elements lowers the I1 stacking fault energy, facilitating the formation of I1-type fault loops and promoting the activity of <c+a> dislocations. Meanwhile, the nano-spacing solute-enriched planar defects (including long-period stacking order structure and I2-type stacking faults) effectively hinder the motion of <c+a> dislocations, increasing flow stress while simultaneously promoting the activation of new <c+a> dislocations. As a result, the synergistic effect between ultrafine grains and solute-enriched planar defects significantly enhances the yield strength and facilitates the numerous non-basal dislocation activity responsible for significantly improved ductility. In addition, the refined second deformable Mg12(Ho,Y)Zn phase further strengthens the alloy and effectively delays the formation of macrocracks to improve the ductility. This study not only present an efficient strategy for developing high-strength, high-ductility Mg alloys but also provides new insights into the interplay between planar defects and dislocations.
{"title":"Ultra-strong and ductile magnesium alloy enabled by ultrafine grains with nano-spacing solute-enriched planar defects","authors":"Zhi Zhang, Jinshu Xie, Jinghuai Zhang, Ruizhi Wu, Jian Wang, Xu-Sheng Yang","doi":"10.1016/j.ijplas.2025.104348","DOIUrl":"https://doi.org/10.1016/j.ijplas.2025.104348","url":null,"abstract":"Mg<sub>96.3</sub>Ho<sub>1.6</sub>Y<sub>1.2</sub>Zn<sub>0.8</sub>Zr<sub>0.1</sub> (at.%) alloy with sub-micron ultrafine grains containing nano-spacing solute-enriched planar defects is developed to exhibit high strengths (yield strength = ∼ 382 MPa and ultimate tensile strength = ∼ 426 MPa) and good ductility (fracture elongation = 19%), compared to the as-homogenized counterpart (yield strength = ∼ 160 MPa, ultimate tensile strength = ∼ 225 MPa, and fracture elongation = 7.5%). Ultrafine grains with an average grain size of ∼ 940 nm is attained via particle-stimulated nucleation mechanism induced by the second Mg<sub>12</sub>(Ho,Y)Zn phase during hot extrusion. A substantial number of ultrafine grains are formed surrounding these second-phase grains. The addition of Ho/Y/Zn elements lowers the <em>I</em><sub>1</sub> stacking fault energy, facilitating the formation of <em>I</em><sub>1</sub>-type fault loops and promoting the activity of &lt;c+a&gt; dislocations. Meanwhile, the nano-spacing solute-enriched planar defects (including long-period stacking order structure and <em>I<sub>2</sub></em>-type stacking faults) effectively hinder the motion of &lt;c+a&gt; dislocations, increasing flow stress while simultaneously promoting the activation of new &lt;c+a&gt; dislocations. As a result, the synergistic effect between ultrafine grains and solute-enriched planar defects significantly enhances the yield strength and facilitates the numerous non-basal dislocation activity responsible for significantly improved ductility. In addition, the refined second deformable Mg<sub>12</sub>(Ho,Y)Zn phase further strengthens the alloy and effectively delays the formation of macrocracks to improve the ductility. This study not only present an efficient strategy for developing high-strength, high-ductility Mg alloys but also provides new insights into the interplay between planar defects and dislocations.","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"65 1","pages":""},"PeriodicalIF":9.8,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deformation Behavior and Strengthening Mechanisms of an Additively Manufactured High-Entropy Alloy with Hierarchical Heterostructures
IF 9.8 1区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2025-04-21 DOI: 10.1016/j.ijplas.2025.104347
Yunjian Bai, Yadong Li, Yizhe Liu, Cheng Yang, Yun-Jiang Wang, Kun Zhang, Bingchen Wei
Additive manufacturing (AM) of high-entropy alloys (HEAs) typically results in the formation of unique microstructures and deformation mechanisms, sparking widespread research interest. This study delves into the deformation behavior and strengthening mechanisms of an AMed HEA with hierarchical heterostructures. The results show that the alloy consists of the FCC matrix, coherent L12 precipitates, incoherent L21 precipitates with lens-shaped inclusions, and chemical cells. The distribution of the L21 phase and the lens-shaped inclusions are unique phenomena, mainly attributed to local chemical fluctuations during the AM process. The FCC matrix primarily contributes to plastic deformation, with L12 precipitates enhancing strength through ordered strengthening, and L21 precipitates providing strengthening via Orowan bypassing mechanism. Additionally, dislocation strengthening also contributes to the overall strength. Notably, the lens-shaped structures within the L21 phase undergo a stress-induced martensitic transformation during deformation, attributed to their inherent metastability, favorable microstructural locations and grain orientations. These findings deepen the understanding of the microstructures and deformation mechanisms of AMed HEAs, offering valuable insights for the design and optimization of high-performance HEAs in the future.
{"title":"Deformation Behavior and Strengthening Mechanisms of an Additively Manufactured High-Entropy Alloy with Hierarchical Heterostructures","authors":"Yunjian Bai, Yadong Li, Yizhe Liu, Cheng Yang, Yun-Jiang Wang, Kun Zhang, Bingchen Wei","doi":"10.1016/j.ijplas.2025.104347","DOIUrl":"https://doi.org/10.1016/j.ijplas.2025.104347","url":null,"abstract":"Additive manufacturing (AM) of high-entropy alloys (HEAs) typically results in the formation of unique microstructures and deformation mechanisms, sparking widespread research interest. This study delves into the deformation behavior and strengthening mechanisms of an AMed HEA with hierarchical heterostructures. The results show that the alloy consists of the FCC matrix, coherent L1<sub>2</sub> precipitates, incoherent L2<sub>1</sub> precipitates with lens-shaped inclusions, and chemical cells. The distribution of the L2<sub>1</sub> phase and the lens-shaped inclusions are unique phenomena, mainly attributed to local chemical fluctuations during the AM process. The FCC matrix primarily contributes to plastic deformation, with L1<sub>2</sub> precipitates enhancing strength through ordered strengthening, and L2<sub>1</sub> precipitates providing strengthening via Orowan bypassing mechanism. Additionally, dislocation strengthening also contributes to the overall strength. Notably, the lens-shaped structures within the L2<sub>1</sub> phase undergo a stress-induced martensitic transformation during deformation, attributed to their inherent metastability, favorable microstructural locations and grain orientations. These findings deepen the understanding of the microstructures and deformation mechanisms of AMed HEAs, offering valuable insights for the design and optimization of high-performance HEAs in the future.","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"268 1","pages":""},"PeriodicalIF":9.8,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Physically Grounded Model for Size Effects in the Initial Yielding of Metallic Materials with Deformation Heterogeneity
IF 9.4 1区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2025-04-18 DOI: 10.1016/j.ijplas.2025.104345
Jianfeng Zhao , Xu Zhang , Songjiang Lu , Dabiao Liu , Hui Chen , Guozheng Kang
The size effect in the initial yielding of metallic materials with deformation heterogeneity has garnered significant attention. However, the underlying physics of this effect remains unclear, and physically grounded models that quantify the relationship between microstructure and mechanical properties are still lacking. Here, we revisit both stress and strain gradient plasticity models, focusing particularly on the stress gradient model due to its physical material length scale and straightforward numerical implementation. By deriving yield stress models based on single-ended dislocation pileup, we identify a critical issue in stress gradient models: the assumption of dislocation pile-up configurations significantly affects yield stress predictions. To elucidate the dislocation mechanisms driving the size-dependent yielding behavior, we investigate two benchmark cases in gradient theories: homogeneous materials undergoing nonuniform deformation and heterostructured materials undergoing uniform deformation, utilizing nonlocal crystal plasticity and discrete dislocation dynamics simulations, respectively. The results not only clarify the issue raised in stress gradient theory, but also suggest the mechanism that pileup-induced stress plays a dominant role in governing the size effect during initial yielding for both homogeneous materials and heterostructured materials. These insights lead to the development of a new physically grounded model based on pileup-induced internal stress, i.e., back stress, which quantitatively predicts the size effect in the initial yielding of heterostructured material under tension and homogeneous material under torsion. This work clarifies the dislocation mechanisms governing extra strengthening in metallic materials with deformation heterogeneity and introduces a physically-based model quantitatively correlating the microstructures with the mechanical properties of heterostructured materials.
具有变形异质性的金属材料在初始屈服过程中的尺寸效应引起了广泛关注。然而,这种效应的基本物理原理仍不清楚,也缺乏量化微观结构与机械性能之间关系的物理基础模型。在此,我们重新审视了应力梯度和应变梯度塑性模型,尤其侧重于应力梯度模型,因为它具有物理材料长度尺度和直接的数值实现。通过推导基于单端位错堆积的屈服应力模型,我们发现了应力梯度模型中的一个关键问题:位错堆积构型假设对屈服应力预测有很大影响。为了阐明驱动与尺寸有关的屈服行为的位错机制,我们分别利用非局部晶体塑性和离散位错动力学模拟,研究了梯度理论中的两个基准案例:发生非均匀变形的均质材料和发生均匀变形的异质结构材料。结果不仅澄清了应力梯度理论中提出的问题,还提出了堆积诱导应力在均质材料和异质结构材料初始屈服过程中的尺寸效应中起主导作用的机制。这些见解促成了基于堆积诱导内应力(即背应力)的新物理基础模型的发展,该模型可定量预测拉伸条件下异质结构材料和扭转条件下均质材料初始屈服过程中的尺寸效应。这项研究阐明了支配具有变形异质性的金属材料额外强化的位错机制,并引入了一个基于物理的模型,定量地将异质结构材料的微观结构与力学性能联系起来。
{"title":"A Physically Grounded Model for Size Effects in the Initial Yielding of Metallic Materials with Deformation Heterogeneity","authors":"Jianfeng Zhao ,&nbsp;Xu Zhang ,&nbsp;Songjiang Lu ,&nbsp;Dabiao Liu ,&nbsp;Hui Chen ,&nbsp;Guozheng Kang","doi":"10.1016/j.ijplas.2025.104345","DOIUrl":"10.1016/j.ijplas.2025.104345","url":null,"abstract":"<div><div>The size effect in the initial yielding of metallic materials with deformation heterogeneity has garnered significant attention. However, the underlying physics of this effect remains unclear, and physically grounded models that quantify the relationship between microstructure and mechanical properties are still lacking. Here, we revisit both stress and strain gradient plasticity models, focusing particularly on the stress gradient model due to its physical material length scale and straightforward numerical implementation. By deriving yield stress models based on single-ended dislocation pileup, we identify a critical issue in stress gradient models: the assumption of dislocation pile-up configurations significantly affects yield stress predictions. To elucidate the dislocation mechanisms driving the size-dependent yielding behavior, we investigate two benchmark cases in gradient theories: homogeneous materials undergoing nonuniform deformation and heterostructured materials undergoing uniform deformation, utilizing nonlocal crystal plasticity and discrete dislocation dynamics simulations, respectively. The results not only clarify the issue raised in stress gradient theory, but also suggest the mechanism that pileup-induced stress plays a dominant role in governing the size effect during initial yielding for both homogeneous materials and heterostructured materials. These insights lead to the development of a new physically grounded model based on pileup-induced internal stress, i.e., back stress, which quantitatively predicts the size effect in the initial yielding of heterostructured material under tension and homogeneous material under torsion. This work clarifies the dislocation mechanisms governing extra strengthening in metallic materials with deformation heterogeneity and introduces a physically-based model quantitatively correlating the microstructures with the mechanical properties of heterostructured materials.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"189 ","pages":"Article 104345"},"PeriodicalIF":9.4,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143849745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unravelling the deformation mechanisms in Ni-rich high entropy alloy with tailored Ti content: An experimental and atomistic approach
IF 9.4 1区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2025-04-17 DOI: 10.1016/j.ijplas.2025.104346
Sudhansu Maharana, Sankalp Biswal, Manashi Sabat, D.K.V.D. Prasad, Tapas Laha
Ti-containing face centred cubic (FCC) high entropy alloys (HEAs) have garnered significant attention due to their exceptional mechanical properties. Nevertheless, the role of Ti on contributory strengthening mechanisms and the corresponding deformation behavior remains less explored till date. The present study sheds light on evolution of microscale plastic deformation mechanism and the associated strengthening effects induced by Ti addition in a novel spark plasma sintered Ni46-xCo18-xAl12Cr8Fe12Mo4-yTi2z (x = 0, y = 0, z = 0; x = 0, 1 and 2, y = 2, z = 1, 2 and 3 at. %) HEA through a combination of experimental analyses and molecular dynamics (MD) simulations. The sintered compacts were composed of FCC solid solution with presence of minor amounts of brittle Cr-rich and Mo-rich sigma (σ) phases, along with essential L12 phase in the FCC matrix. Yield strength and compressive strength increased continuously with increasing Ti content, from 1130 MPa and 1809 MPa in Ti-free HEA to 1452 MPa and 2011 MPa in 6 at. % Ti containing HEA, respectively, while maintaining an appreciable fracture strain > 26 % in all the consolidated HEAs. Such remarkable mechanical properties are primarily attributed to inherent solid solution strengthening from Ti-induced lattice distortion, along with synergistic effect of narrow twin boundaries, finer grain size and precipitation strengthening from L12 phase. Furthermore, MD simulation revealed that increasing Ti content lowered stacking fault energy of the HEAs and promoted formation of deformation twins (DTs) and stacking faults (SFs). Characterization of deformed microstructures at sequential strain levels showed that plastic deformation in Ti-free HEA was primarily mediated by ordinary dislocation slip, whereas with increase in Ti content, plastic deformation predominantly proceeded through formation of SF networks and DTs, alongside dislocation gliding. Additionally, increased dynamic recrystallization fraction in higher Ti-containing HEAs during loading, attributed to increased pre-existing strain within grains, contributed in retaining impressive ductility. This study provides comprehensive insights into the deformation mechanisms in Ti-added Ni-rich FCC HEAs and offers guidance for designing high-performance HEAs.
{"title":"Unravelling the deformation mechanisms in Ni-rich high entropy alloy with tailored Ti content: An experimental and atomistic approach","authors":"Sudhansu Maharana,&nbsp;Sankalp Biswal,&nbsp;Manashi Sabat,&nbsp;D.K.V.D. Prasad,&nbsp;Tapas Laha","doi":"10.1016/j.ijplas.2025.104346","DOIUrl":"10.1016/j.ijplas.2025.104346","url":null,"abstract":"<div><div>Ti-containing face centred cubic (FCC) high entropy alloys (HEAs) have garnered significant attention due to their exceptional mechanical properties. Nevertheless, the role of Ti on contributory strengthening mechanisms and the corresponding deformation behavior remains less explored till date. The present study sheds light on evolution of microscale plastic deformation mechanism and the associated strengthening effects induced by Ti addition in a novel spark plasma sintered Ni<sub>46-x</sub>Co<sub>18-x</sub>Al<sub>12</sub>Cr<sub>8</sub>Fe<sub>12</sub>Mo<sub>4-y</sub>Ti<sub>2z</sub> (<em>x</em> = 0, <em>y</em> = 0, <em>z</em> = 0; <em>x</em> = 0, 1 and 2, <em>y</em> = 2, <em>z</em> = 1, 2 and 3 at. %) HEA through a combination of experimental analyses and molecular dynamics (MD) simulations. The sintered compacts were composed of FCC solid solution with presence of minor amounts of brittle Cr-rich and Mo-rich sigma (σ) phases, along with essential L1<sub>2</sub> phase in the FCC matrix. Yield strength and compressive strength increased continuously with increasing Ti content, from 1130 MPa and 1809 MPa in Ti-free HEA to 1452 MPa and 2011 MPa in 6 at. % Ti containing HEA, respectively, while maintaining an appreciable fracture strain &gt; 26 % in all the consolidated HEAs. Such remarkable mechanical properties are primarily attributed to inherent solid solution strengthening from Ti-induced lattice distortion, along with synergistic effect of narrow twin boundaries, finer grain size and precipitation strengthening from L1<sub>2</sub> phase. Furthermore, MD simulation revealed that increasing Ti content lowered stacking fault energy of the HEAs and promoted formation of deformation twins (DTs) and stacking faults (SFs). Characterization of deformed microstructures at sequential strain levels showed that plastic deformation in Ti-free HEA was primarily mediated by ordinary dislocation slip, whereas with increase in Ti content, plastic deformation predominantly proceeded through formation of SF networks and DTs, alongside dislocation gliding. Additionally, increased dynamic recrystallization fraction in higher Ti-containing HEAs during loading, attributed to increased pre-existing strain within grains, contributed in retaining impressive ductility. This study provides comprehensive insights into the deformation mechanisms in Ti-added Ni-rich FCC HEAs and offers guidance for designing high-performance HEAs.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"189 ","pages":"Article 104346"},"PeriodicalIF":9.4,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143846553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-phase microstructure-based crystal plasticity constitutive model for nickel-based single crystal superalloys incorporating Re effects on rafting and dislocation evolution
IF 9.4 1区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2025-04-15 DOI: 10.1016/j.ijplas.2025.104343
Xiaowei Li , Yaxin Zhu , Lv Zhao , Shuang Liang , Minsheng Huang , Zhenhuan Li
The unique two-phase microstructure of nickel-based single crystal superalloys (NBSCSs) imparts exceptional high-temperature mechanical properties, promoting the use of NBSCSs for turbine blades. A moderate addition of rhenium (Re) can further enhance the mechanical properties by influencing dislocation evolution within the two-phase microstructure and mitigating rafting. The present work aims to quantitatively correlate dislocation evolution and rafting in the two-phase microstructure with the macroscopic mechanical behavior of NBSCSs. To this end, a representative volume element (RVE) consisting of a cubic precipitate surrounded by horizontal and vertical matrix channels is built, and a micromechanical homogenization method based on small perturbation analysis is adopted. To improve the computational efficiency while maintaining a reasonable accuracy, an approximate algorithm is proposed. Based on this, a two-phase microstructure-based crystal plasticity (CP) constitutive model that incorporates Re-influenced dislocation evolution mechanisms and accounts for Re-influenced evolution of the two-phase microstructure (i.e., rafting) has been developed. Using a unified set of constitutive parameters, this CP model successfully predicts both the instantaneous plasticity and prolonged-time creep behaviors of NBSCSs under various temperatures, loading rates and loading orientations. It is noteworthy that the influence of Re doping on both dislocation evolution and rafting is considered in the present CP model, significantly enhancing its ability for describing the mechanical behavior of NBSCSs.
{"title":"Two-phase microstructure-based crystal plasticity constitutive model for nickel-based single crystal superalloys incorporating Re effects on rafting and dislocation evolution","authors":"Xiaowei Li ,&nbsp;Yaxin Zhu ,&nbsp;Lv Zhao ,&nbsp;Shuang Liang ,&nbsp;Minsheng Huang ,&nbsp;Zhenhuan Li","doi":"10.1016/j.ijplas.2025.104343","DOIUrl":"10.1016/j.ijplas.2025.104343","url":null,"abstract":"<div><div>The unique two-phase microstructure of nickel-based single crystal superalloys (NBSCSs) imparts exceptional high-temperature mechanical properties, promoting the use of NBSCSs for turbine blades. A moderate addition of rhenium (Re) can further enhance the mechanical properties by influencing dislocation evolution within the two-phase microstructure and mitigating rafting. The present work aims to quantitatively correlate dislocation evolution and rafting in the two-phase microstructure with the macroscopic mechanical behavior of NBSCSs. To this end, a representative volume element (RVE) consisting of a cubic precipitate surrounded by horizontal and vertical matrix channels is built, and a micromechanical homogenization method based on small perturbation analysis is adopted. To improve the computational efficiency while maintaining a reasonable accuracy, an approximate algorithm is proposed. Based on this, a two-phase microstructure-based crystal plasticity (CP) constitutive model that incorporates Re-influenced dislocation evolution mechanisms and accounts for Re-influenced evolution of the two-phase microstructure (i.e., rafting) has been developed. Using a unified set of constitutive parameters, this CP model successfully predicts both the instantaneous plasticity and prolonged-time creep behaviors of NBSCSs under various temperatures, loading rates and loading orientations. It is noteworthy that the influence of Re doping on both dislocation evolution and rafting is considered in the present CP model, significantly enhancing its ability for describing the mechanical behavior of NBSCSs.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"189 ","pages":"Article 104343"},"PeriodicalIF":9.4,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143836870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of twinning on shear localization of Al0.1CoCrFeNi high entropy alloy at high strain rates: Experiment and crystal plasticity modeling
IF 9.4 1区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2025-04-12 DOI: 10.1016/j.ijplas.2025.104339
Wen An , Jiang-Peng Yang , Chuan-Zhi Liu , Qi-Lin Xiong
As one of the most important plastic deformation mechanisms of high-entropy alloys, deformation twinning can increase the strength without losing plasticity. Nevertheless, recent studies have shown that high-density twins can form "soft spots" and promote the occurrence of shear localization failure at high strain rates. The extent to which deformation twins contribute to the formation of shear localization remains unclear. In this study, a series of dynamic uniaxial compression experiments have been performed with Al0.1CoCrFeNi HEAs under different conditions to disclose the dynamic recrystallization mechanism. Corresponding to the dynamic recrystallization and plastic dissipation mechanisms at high strain rates, a dislocation entanglement model has been established in conjunction with deformation twinning and physically based heat dissipation to capture the process of shear localization formation. The dislocation entanglement model has been integrated into the theoretical framework of crystal plasticity to perform finite element simulations of high-strain rate deformations. The results predicted by the crystal plasticity simulations are in good agreement with the experimental data, confirming the rationality of the new constitutive model. Deformation twinning can significantly improve strain hardening ability and resistance to shear localization. Interestingly, when the volume fraction of twins reaches a certain level, the mechanism of twin-assisted continuous dynamic recrystallization is triggered due to the interaction between dislocations and twins, resulting in the formation of many “soft spots” (corresponding to the twin region with high density). Upon further deformation, these “soft spots” continue to evolve and aggregate to eventually form the bands of shear localization. Our results can be used for the microstructure design of dynamic high-performance metals with high strength and plasticity to artificially control shear localization.
{"title":"Effect of twinning on shear localization of Al0.1CoCrFeNi high entropy alloy at high strain rates: Experiment and crystal plasticity modeling","authors":"Wen An ,&nbsp;Jiang-Peng Yang ,&nbsp;Chuan-Zhi Liu ,&nbsp;Qi-Lin Xiong","doi":"10.1016/j.ijplas.2025.104339","DOIUrl":"10.1016/j.ijplas.2025.104339","url":null,"abstract":"<div><div>As one of the most important plastic deformation mechanisms of high-entropy alloys, deformation twinning can increase the strength without losing plasticity. Nevertheless, recent studies have shown that high-density twins can form \"soft spots\" and promote the occurrence of shear localization failure at high strain rates. The extent to which deformation twins contribute to the formation of shear localization remains unclear. In this study, a series of dynamic uniaxial compression experiments have been performed with Al<sub>0.1</sub>CoCrFeNi HEAs under different conditions to disclose the dynamic recrystallization mechanism. Corresponding to the dynamic recrystallization and plastic dissipation mechanisms at high strain rates, a dislocation entanglement model has been established in conjunction with deformation twinning and physically based heat dissipation to capture the process of shear localization formation. The dislocation entanglement model has been integrated into the theoretical framework of crystal plasticity to perform finite element simulations of high-strain rate deformations. The results predicted by the crystal plasticity simulations are in good agreement with the experimental data, confirming the rationality of the new constitutive model. Deformation twinning can significantly improve strain hardening ability and resistance to shear localization. Interestingly, when the volume fraction of twins reaches a certain level, the mechanism of twin-assisted continuous dynamic recrystallization is triggered due to the interaction between dislocations and twins, resulting in the formation of many “soft spots” (corresponding to the twin region with high density). Upon further deformation, these “soft spots” continue to evolve and aggregate to eventually form the bands of shear localization. Our results can be used for the microstructure design of dynamic high-performance metals with high strength and plasticity to artificially control shear localization.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"189 ","pages":"Article 104339"},"PeriodicalIF":9.4,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143822646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tensile behavior of additively manufactured Inconel 718 and stainless steel 316L with compositionally graded joints
IF 9.4 1区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2025-04-12 DOI: 10.1016/j.ijplas.2025.104342
Yaojie Wen , Yang Gao , Ramasubramanian Lakshmi Narayan , Wei Cai , Pei Wang , Xiaoding Wei , Baicheng Zhang , Upadrasta Ramamurty , Xuanhui Qu
The microstructure and tensile behavior of laser powder bed fusion (LPBF) processed 316L austenitic stainless steel (316L) and Inconel 718 Ni-based superalloy (IN718) coupons with compositionally graded joints (CGJ), spanning lengths of 0, 10 and 20 mm, in the as built and heat-treated conditions, are investigated. In the as built condition, the microstructure of pure 316L and IN718 ligaments consist of micron-sized sub-grains present within 〈001〉 textured columnar grains, whereas CGJs contain a mixture of randomly textured columnar and equiaxed grains. Heat treatment, involving solutionizing above 1040 °C with subsequent ageing at 720 and 620 °C, leads to the recrystallization of portions with > 85 wt. % IN718 of the CGJ coupons. Higher composition gradient span, in both the as built and heat-treated states, improves the yield and tensile strengths of the specimens, but compromises ductility. Simulations indicate that CGJs with shallower composition gradients have lower fluctuations in the stress triaxiality, von mises equivalent stress, and the maximum shear stress compared to those with sharper gradients. These mechanical property variations and the deformation characteristics of the CGJ specimens are analyzed in detail by considering the varying degrees of plastic constraint on the 100 wt. % 316L and the degree of interactions between strain-generated dislocations and geometrically necessary dislocations. Finally, the effectiveness of CGJ in enhancing the tensile properties of the 316L/IN718 joints and the geometrical considerations for designing such joints for different alloy combinations is discussed.
{"title":"Tensile behavior of additively manufactured Inconel 718 and stainless steel 316L with compositionally graded joints","authors":"Yaojie Wen ,&nbsp;Yang Gao ,&nbsp;Ramasubramanian Lakshmi Narayan ,&nbsp;Wei Cai ,&nbsp;Pei Wang ,&nbsp;Xiaoding Wei ,&nbsp;Baicheng Zhang ,&nbsp;Upadrasta Ramamurty ,&nbsp;Xuanhui Qu","doi":"10.1016/j.ijplas.2025.104342","DOIUrl":"10.1016/j.ijplas.2025.104342","url":null,"abstract":"<div><div>The microstructure and tensile behavior of laser powder bed fusion (LPBF) processed 316L austenitic stainless steel (316L) and Inconel 718 Ni-based superalloy (IN718) coupons with compositionally graded joints (CGJ), spanning lengths of 0, 10 and 20 mm, in the as built and heat-treated conditions, are investigated. In the as built condition, the microstructure of pure 316L and IN718 ligaments consist of micron-sized sub-grains present within 〈001〉 textured columnar grains, whereas CGJs contain a mixture of randomly textured columnar and equiaxed grains. Heat treatment, involving solutionizing above 1040 °C with subsequent ageing at 720 and 620 °C, leads to the recrystallization of portions with &gt; 85 wt. % IN718 of the CGJ coupons. Higher composition gradient span, in both the as built and heat-treated states, improves the yield and tensile strengths of the specimens, but compromises ductility. Simulations indicate that CGJs with shallower composition gradients have lower fluctuations in the stress triaxiality, von mises equivalent stress, and the maximum shear stress compared to those with sharper gradients. These mechanical property variations and the deformation characteristics of the CGJ specimens are analyzed in detail by considering the varying degrees of plastic constraint on the 100 wt. % 316L and the degree of interactions between strain-generated dislocations and geometrically necessary dislocations. Finally, the effectiveness of CGJ in enhancing the tensile properties of the 316L/IN718 joints and the geometrical considerations for designing such joints for different alloy combinations is discussed.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"189 ","pages":"Article 104342"},"PeriodicalIF":9.4,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143822647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigate irradiation hardening behavior in BCC refractory high-entropy alloys using phase-field modeling informed by atomistic simulations of displacement cascades 通过位移级联的原子模拟,利用相场建模研究 BCC 难熔高熵合金的辐照硬化行为
IF 9.4 1区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2025-04-11 DOI: 10.1016/j.ijplas.2025.104340
Jie Li , Yaxin Zhu , Lv Zhao , Shuang Liang , Minsheng Huang , Zhenhuan Li
Refractory high-entropy alloys (RHEAs) exhibit excellent anti-irradiation properties, making them promising candidates for application in advanced nuclear reactors. In this study, molecular statics (MS) and molecular dynamics (MD) simulations are conducted to investigate the local unstable stacking fault energy (USFE) in RHEAs induced by primary knock-on atoms (PKAs) of displacement cascades. Based on these atomistic simulations, a phase-field dislocation dynamics (PFDD) model is developed, incorporating the effects of chemical composition fluctuations and displacement cascades on local USFE in RHEAs using a random statistical approach. Using this PFDD model, the planar motion of edge and screw dislocations, as well as the cross-slip behavior of screw dislocations, in WTaCrV are examined. The results indicate that the cascade region can effectively pin edge dislocations and hinder the nucleation of kink pairs in screw dislocations, leading to irradiation hardening. However, the low local USFE caused by chemical composition fluctuations in WTaCrV allows edge dislocation segments near pinning sites to bow out, dragging pinned dislocation segments and reducing the pinning effect. Additionally, the low local USFE promotes the nucleation and migration of kink pairs in screw dislocations. Furthermore, for the case of screw dislocation cross-slip, the irradiation hardening is alleviated as nonplanar kink pairs recede to the habit plane. These simulation results reveal the mesoscale internal mechanisms underlying anti-irradiation hardening in RHEAs. Based on these findings, mesoscale theoretical models describing dislocation motion and irradiation hardening are proposed, and they are verified experimentally. With these models, the irradiation hardening behavior of other RHEAs can be predicted. These findings can guide the design and preparation of advanced anti-irradiation RHEAs and contribute to the development of upscaled theoretical models and simulation methods.
难熔高熵合金(RHEAs)具有优异的抗辐照性能,因此有望应用于先进的核反应堆。本研究通过分子静力学(MS)和分子动力学(MD)模拟,研究了由位移级联的原初敲击原子(PKAs)诱导的 RHEAs 中的局部不稳定堆积断层能(USFE)。在这些原子模拟的基础上,建立了一个相场位错动力学(PFDD)模型,采用随机统计方法将化学成分波动和位移级联对 RHEAs 中局部 USFE 的影响纳入其中。利用该 PFDD 模型,研究了 WTaCrV 中边缘位错和螺钉位错的平面运动以及螺钉位错的交叉滑移行为。结果表明,级联区可以有效地钉住边缘位错,并阻碍螺钉位错中扭结对的成核,从而导致辐照硬化。然而,由于 WTaCrV 的化学成分波动导致局部 USFE 值较低,这使得针刺点附近的边缘位错段会向外弯曲,拖拽针刺位错段,从而降低针刺效果。此外,低局部 USFE 会促进螺旋位错中扭结对的成核和迁移。此外,在螺旋位错交叉滑移的情况下,由于非平面的扭结对向习性平面退缩,辐照硬化得到缓解。这些模拟结果揭示了 RHEAs 中抗辐照硬化的中尺度内部机制。根据这些发现,提出了描述位错运动和辐照硬化的中尺度理论模型,并通过实验进行了验证。有了这些模型,就可以预测其他 RHEA 的辐照硬化行为。这些发现可以指导先进抗辐照 RHEAs 的设计和制备,并有助于开发更先进的理论模型和模拟方法。
{"title":"Investigate irradiation hardening behavior in BCC refractory high-entropy alloys using phase-field modeling informed by atomistic simulations of displacement cascades","authors":"Jie Li ,&nbsp;Yaxin Zhu ,&nbsp;Lv Zhao ,&nbsp;Shuang Liang ,&nbsp;Minsheng Huang ,&nbsp;Zhenhuan Li","doi":"10.1016/j.ijplas.2025.104340","DOIUrl":"10.1016/j.ijplas.2025.104340","url":null,"abstract":"<div><div>Refractory high-entropy alloys (RHEAs) exhibit excellent anti-irradiation properties, making them promising candidates for application in advanced nuclear reactors. In this study, molecular statics (MS) and molecular dynamics (MD) simulations are conducted to investigate the local unstable stacking fault energy (USFE) in RHEAs induced by primary knock-on atoms (PKAs) of displacement cascades. Based on these atomistic simulations, a phase-field dislocation dynamics (PFDD) model is developed, incorporating the effects of chemical composition fluctuations and displacement cascades on local USFE in RHEAs using a random statistical approach. Using this PFDD model, the planar motion of edge and screw dislocations, as well as the cross-slip behavior of screw dislocations, in WTaCrV are examined. The results indicate that the cascade region can effectively pin edge dislocations and hinder the nucleation of kink pairs in screw dislocations, leading to irradiation hardening. However, the low local USFE caused by chemical composition fluctuations in WTaCrV allows edge dislocation segments near pinning sites to bow out, dragging pinned dislocation segments and reducing the pinning effect. Additionally, the low local USFE promotes the nucleation and migration of kink pairs in screw dislocations. Furthermore, for the case of screw dislocation cross-slip, the irradiation hardening is alleviated as nonplanar kink pairs recede to the habit plane. These simulation results reveal the mesoscale internal mechanisms underlying anti-irradiation hardening in RHEAs. Based on these findings, mesoscale theoretical models describing dislocation motion and irradiation hardening are proposed, and they are verified experimentally. With these models, the irradiation hardening behavior of other RHEAs can be predicted. These findings can guide the design and preparation of advanced anti-irradiation RHEAs and contribute to the development of upscaled theoretical models and simulation methods.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"189 ","pages":"Article 104340"},"PeriodicalIF":9.4,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143820082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A plasticity-induced internal length mean field model based on statistical analyses of EBSD and nanoindentation data 基于 EBSD 和纳米压痕数据统计分析的塑性诱导内长平均场模型
IF 9.8 1区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2025-04-10 DOI: 10.1016/j.ijplas.2025.104327
Layal Chamma, Jean-Marc Pipard, Artem Arlazarov, Thiebaud Richeton, Stéphane Berbenni
A new plasticity-induced internal length mean field model (ILMF) is developed, based on statistical analyses of geometrically necessary dislocation (GND) densities and total dislocation densities estimated from EBSD and nanoindentation data, respectively. It is applied to a single phase ferritic Al-killed steel, which plastically deforms with the occurrence of heterogeneous intra-granular fields. During tensile tests up to 18% of overall plastic strain, the deformation maps of GND densities due to intra-granular plastic strain gradients are obtained together with nano-hardness maps. The Nye tensor (or dislocation density tensor) is calculated from the 2D EBSD orientations to estimate the intragranular GND density, while a mechanistic model is used to estimate the intragranular total dislocation density from nano-hardness measurements. These data are quantified as a function of the distance to grain boundaries (GBs) to study the development of such plastic strain gradients in the vicinity of GBs. The novel methodology lies in extracting the evolution law of a single plasticity-induced internal length, denoted <span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><mi is="true">&#x3BB;</mi></math>' role="presentation" style="font-size: 90%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="1.971ex" role="img" style="vertical-align: -0.235ex;" viewbox="0 -747.2 583.5 848.5" width="1.355ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g is="true"><use xlink:href="#MJMATHI-3BB"></use></g></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi is="true">λ</mi></math></span></span><script type="math/mml"><math><mi is="true">λ</mi></math></script></span>, from the statistical analysis of GND and total dislocation densities spatial distribution. Hence, it is introduced as an evolving variable in an elastoviscoplastic self-consistent model (EVPSC) for a two-phase composite as a new internal mean field (ILMF) approach. Both experimentally quantified microstructural internal lengths defined by the mean grain size and the evolving layer <span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><mi is="true">&#x3BB;</mi></math>' role="presentation" style="font-size: 90%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="1.971ex" role="img" style="vertical-align: -0.235ex;" viewbox="0 -747.2 583.5 848.5" width="1.355ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g is="true"><use xlink:href="#MJMATHI-3BB"></use></g></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML">
{"title":"A plasticity-induced internal length mean field model based on statistical analyses of EBSD and nanoindentation data","authors":"Layal Chamma, Jean-Marc Pipard, Artem Arlazarov, Thiebaud Richeton, Stéphane Berbenni","doi":"10.1016/j.ijplas.2025.104327","DOIUrl":"https://doi.org/10.1016/j.ijplas.2025.104327","url":null,"abstract":"A new plasticity-induced internal length mean field model (ILMF) is developed, based on statistical analyses of geometrically necessary dislocation (GND) densities and total dislocation densities estimated from EBSD and nanoindentation data, respectively. It is applied to a single phase ferritic Al-killed steel, which plastically deforms with the occurrence of heterogeneous intra-granular fields. During tensile tests up to 18% of overall plastic strain, the deformation maps of GND densities due to intra-granular plastic strain gradients are obtained together with nano-hardness maps. The Nye tensor (or dislocation density tensor) is calculated from the 2D EBSD orientations to estimate the intragranular GND density, while a mechanistic model is used to estimate the intragranular total dislocation density from nano-hardness measurements. These data are quantified as a function of the distance to grain boundaries (GBs) to study the development of such plastic strain gradients in the vicinity of GBs. The novel methodology lies in extracting the evolution law of a single plasticity-induced internal length, denoted &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3BB;&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"1.971ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -747.2 583.5 848.5\" width=\"1.355ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;g is=\"true\"&gt;&lt;use xlink:href=\"#MJMATHI-3BB\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span role=\"presentation\"&gt;&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi is=\"true\"&gt;λ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;script type=\"math/mml\"&gt;&lt;math&gt;&lt;mi is=\"true\"&gt;λ&lt;/mi&gt;&lt;/math&gt;&lt;/script&gt;&lt;/span&gt;, from the statistical analysis of GND and total dislocation densities spatial distribution. Hence, it is introduced as an evolving variable in an elastoviscoplastic self-consistent model (EVPSC) for a two-phase composite as a new internal mean field (ILMF) approach. Both experimentally quantified microstructural internal lengths defined by the mean grain size and the evolving layer &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3BB;&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"1.971ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -747.2 583.5 848.5\" width=\"1.355ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;g is=\"true\"&gt;&lt;use xlink:href=\"#MJMATHI-3BB\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span role=\"presentation\"&gt;&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"75 1","pages":""},"PeriodicalIF":9.8,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143813918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Plasticity
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1