首页 > 最新文献

International Journal of Plasticity最新文献

英文 中文
Atomistic and data-driven insights into the local slip resistances in random refractory multi-principal element alloys 随机难熔多主元素合金的局部滑移抗力的原子和数据驱动的见解
IF 9.8 1区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-02-06 DOI: 10.1016/j.ijplas.2026.104635
Wu-Rong Jian, Arjun S. Kulathuvayal, Hanfeng Zhai, Anshu Raj, Xiaohu Yao, Yanqing Su, Shuozhi Xu, Irene J. Beyerlein
{"title":"Atomistic and data-driven insights into the local slip resistances in random refractory multi-principal element alloys","authors":"Wu-Rong Jian, Arjun S. Kulathuvayal, Hanfeng Zhai, Anshu Raj, Xiaohu Yao, Yanqing Su, Shuozhi Xu, Irene J. Beyerlein","doi":"10.1016/j.ijplas.2026.104635","DOIUrl":"https://doi.org/10.1016/j.ijplas.2026.104635","url":null,"abstract":"","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"71 1","pages":""},"PeriodicalIF":9.8,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructural origins of enhanced creep resistance in laser printed Ti-6Al-4V 激光打印Ti-6Al-4V抗蠕变性能增强的显微组织根源
IF 12.8 1区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-02-05 DOI: 10.1016/j.ijplas.2026.104637
Zhun Liang , Mingyang Zhang , Zheng Guo , Zongchang Guo , Yinan Cui
Creep resistance is critical for the reliability of engineering structures at high temperatures. In this study, in situ scanning electron microscope (SEM) creep experiments show that laser powder bed fusion fabricated Ti-6Al-4V (LPBF Ti-6Al-4V) exhibits a creep lifetime about three to five times longer than that of forged Ti-6Al-4V. Distinct creep failure mechanisms were identified, with grain boundary sliding dominating in the forged Ti-6Al-4V, while void-induced grain boundary separation controlled the LPBF Ti-6Al-4V. By integrating experiments with a multiphysics coupled microscale creep model that simultaneously captures diffusion creep, dislocation glide and climb, grain boundary sliding, and void evolution, the results suggest that the elongated grain morphology and lower dislocation density in LPBF Ti-6Al-4V contribute to its enhanced creep performance. A physics-informed neural network (PINN)-driven multiscale creep framework is developed to bridge the gap between the mechanistic microscale creep model and macroscale creep life prediction. This work provides new insights into the creep resistance of additively manufactured titanium alloys and presents a promising approach for multiscale creep life assessment.
高温下,抗蠕变性能对工程结构的可靠性至关重要。原位扫描电镜(SEM)蠕变实验表明,激光粉末床熔合制备Ti-6Al-4V (LPBF Ti-6Al-4V)的蠕变寿命比锻造Ti-6Al-4V长3 ~ 5倍。Ti-6Al-4V的蠕变破坏机制明显,以晶界滑动为主,而孔洞晶界分离控制着LPBF的蠕变破坏。结合多物理场耦合微尺度蠕变模型(同时捕捉扩散蠕变、位错滑动和爬升、晶界滑动和空洞演化),结果表明,LPBF Ti-6Al-4V中拉长的晶粒形态和较低的位错密度有助于其蠕变性能的增强。为了弥补机械微尺度蠕变模型与宏观尺度蠕变寿命预测之间的差距,提出了基于物理信息的神经网络驱动的多尺度蠕变框架。这项工作为增材制造钛合金的抗蠕变性能提供了新的见解,并为多尺度蠕变寿命评估提供了一种有前途的方法。
{"title":"Microstructural origins of enhanced creep resistance in laser printed Ti-6Al-4V","authors":"Zhun Liang ,&nbsp;Mingyang Zhang ,&nbsp;Zheng Guo ,&nbsp;Zongchang Guo ,&nbsp;Yinan Cui","doi":"10.1016/j.ijplas.2026.104637","DOIUrl":"10.1016/j.ijplas.2026.104637","url":null,"abstract":"<div><div>Creep resistance is critical for the reliability of engineering structures at high temperatures. In this study, <em>in situ</em> scanning electron microscope (SEM) creep experiments show that laser powder bed fusion fabricated Ti-6Al-4V (LPBF Ti-6Al-4V) exhibits a creep lifetime about three to five times longer than that of forged Ti-6Al-4V. Distinct creep failure mechanisms were identified, with grain boundary sliding dominating in the forged Ti-6Al-4V, while void-induced grain boundary separation controlled the LPBF Ti-6Al-4V. By integrating experiments with a multiphysics coupled microscale creep model that simultaneously captures diffusion creep, dislocation glide and climb, grain boundary sliding, and void evolution, the results suggest that the elongated grain morphology and lower dislocation density in LPBF Ti-6Al-4V contribute to its enhanced creep performance. A physics-informed neural network (PINN)-driven multiscale creep framework is developed to bridge the gap between the mechanistic microscale creep model and macroscale creep life prediction. This work provides new insights into the creep resistance of additively manufactured titanium alloys and presents a promising approach for multiscale creep life assessment.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"199 ","pages":"Article 104637"},"PeriodicalIF":12.8,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146116217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Taylor to Sachs: An Intermediate Constraint Based on a Single Microstructural Parameter 从Taylor到Sachs:基于单一微观结构参数的中间约束
IF 9.8 1区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-02-05 DOI: 10.1016/j.ijplas.2026.104634
Seonghwan Choi, Geonjin Shin, Jee Hyuk Ahn, Hyuk Jong Bong, Myoung-Gyu Lee, Kyung Mun Min
{"title":"From Taylor to Sachs: An Intermediate Constraint Based on a Single Microstructural Parameter","authors":"Seonghwan Choi, Geonjin Shin, Jee Hyuk Ahn, Hyuk Jong Bong, Myoung-Gyu Lee, Kyung Mun Min","doi":"10.1016/j.ijplas.2026.104634","DOIUrl":"https://doi.org/10.1016/j.ijplas.2026.104634","url":null,"abstract":"","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"307 1","pages":""},"PeriodicalIF":9.8,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New insights into the hetero-deformation-induced (HDI) hardening and elevated back stress in additively manufactured 316L stainless steel 增材制造316L不锈钢的异质变形诱导(HDI)硬化和背应力升高的新见解
IF 9.8 1区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-02-05 DOI: 10.1016/j.ijplas.2026.104633
Xuepan Li, Weipeng Li, Xiaogang Wang, Xiangyun Long, Chao Jiang
{"title":"New insights into the hetero-deformation-induced (HDI) hardening and elevated back stress in additively manufactured 316L stainless steel","authors":"Xuepan Li, Weipeng Li, Xiaogang Wang, Xiangyun Long, Chao Jiang","doi":"10.1016/j.ijplas.2026.104633","DOIUrl":"https://doi.org/10.1016/j.ijplas.2026.104633","url":null,"abstract":"","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"2 1","pages":""},"PeriodicalIF":9.8,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hetero-deformation mechanisms and GND-associated plastic strain partitioning across single/polycrystal hetero-boundary in nickel-based superalloys 镍基高温合金的异质变形机制及gnd相关的单/多晶异质边界塑性应变分配
IF 9.8 1区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-02-04 DOI: 10.1016/j.ijplas.2026.104636
Xinrui Xiao, Liwu Liu, Xiaoxian Zhang, Yanju Liu, Jinsong Leng
{"title":"Hetero-deformation mechanisms and GND-associated plastic strain partitioning across single/polycrystal hetero-boundary in nickel-based superalloys","authors":"Xinrui Xiao, Liwu Liu, Xiaoxian Zhang, Yanju Liu, Jinsong Leng","doi":"10.1016/j.ijplas.2026.104636","DOIUrl":"https://doi.org/10.1016/j.ijplas.2026.104636","url":null,"abstract":"","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"17 1","pages":""},"PeriodicalIF":9.8,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructure-Induced Fatigue Scatter of Additively Manufactured Inconel 718: Insight from Multilevel Simulations and Dislocation-based Strain Gradient Crystal Plasticity 增材制造Inconel 718的显微组织诱导疲劳散射:来自多层模拟和基于位错的应变梯度晶体塑性的见解
IF 9.8 1区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-02-03 DOI: 10.1016/j.ijplas.2026.104632
Xian-Chen Kuang, Wu-Gui Jiang, Long-Hui Mao, Zhi-Kai Wu, Fen-Cheng Liu, Xiang Zhou, Peng-Hang Ling, Yang-Cheng Zhang, Min Yi
The fatigue performance of additively manufactured (AM) Inconel 718 is intrinsically governed by its grain morphology, necessitating a predictive understanding of the underlying plasticity-dominated mechanisms. To address this challenge, this study applies an integrated multilevel computational framework that explicitly bridges the process–structure–property–performance chain by coupling finite-element and cellular-automata (FE–CA) simulations of grain growth during laser powder bed fusion (LPBF), a deep neural network (DNN) for efficient material parameter calibration, and a strain-gradient crystal plasticity finite element (CPFE) model for fatigue life prediction. This unified framework enables, for the first time, a rigorous like-for-like comparison of three characteristic AM microstructures—equiaxed, columnar, and mixed grains—under a consistent computational and experimental calibration protocol, and thereby reveals new micromechanical insights into potential fatigue damage initiation from the plasticity perspective. Our simulations indicate that fatigue resistance is predominantly controlled by grain morphology and further modulated by morphology-induced anisotropy. Among them, equiaxed grains exhibit superior fatigue resistance to columnar and mixed grain morphologies, which is attributed to the activation of multiple slip systems and the resulting homogeneous deformation. In contrast, the strong texture in columnar grains gives rise to a pronounced “channeling effect”, leading to highly localized slip and a mismatch between regions of elevated plastic strain and actual damage accumulation. In terms of loading direction, the fatigue resistance under loading along the building direction (BD) is higher than that under loading along the transverse direction (TD). Crack initiation is predominantly predicted at high-angle grain boundaries and triple junctions, with the specific patterns highly sensitive to both grain morphology and loading direction. A key finding is the identification of a critical fatigue indicator parameter (FIP) threshold, beyond which fatigue life scatter intensifies significantly. While the CPFE model provides accurate predictions at intermediate strain amplitudes, its efficacy diminishes at higher strains due to the activation of alternative failure mechanisms. Overall, by integrating established computational methods, this work provides microstructure-sensitive insights and a practical framework for fatigue life prediction of AM materials, offering a potential pathway for AM process and microstructure optimization to achieve superior fatigue performance.
增材制造(AM) Inconel 718的疲劳性能本质上是由其晶粒形貌决定的,因此需要对潜在的塑性主导机制进行预测性理解。为了应对这一挑战,本研究采用了一个集成的多层计算框架,通过耦合激光粉末床熔合(LPBF)过程中晶粒生长的有限元和细胞自动机(FE-CA)模拟,高效材料参数校准的深度神经网络(DNN),以及用于疲劳寿命预测的应变梯度晶体塑性有限元(CPFE)模型,明确地连接了过程-结构-性能-性能链。这个统一的框架首次在一致的计算和实验校准协议下,对三种特征AM微结构(等轴、柱状和混合晶粒)进行了严格的同类比较,从而从塑性角度揭示了潜在疲劳损伤引发的新微力学见解。我们的模拟表明,疲劳抗力主要由晶粒形貌控制,并进一步由形貌诱导的各向异性调节。其中,等轴晶粒对柱状和混合晶粒表现出优异的抗疲劳性能,这是由于多重滑移系统的激活和由此产生的均匀变形所致。相反,柱状晶粒中的强织构会产生明显的“沟槽效应”,导致高度局部化的滑移,以及塑性应变升高区域与实际损伤积累之间的不匹配。在加载方向上,沿建筑方向(BD)加载的疲劳抗力高于沿横向(TD)加载的疲劳抗力。裂纹萌生主要发生在高角度晶界和三联结处,具体模式对晶粒形态和加载方向高度敏感。一个关键的发现是确定了一个临界疲劳指标参数(FIP)阈值,超过该阈值,疲劳寿命散射会显著加剧。虽然CPFE模型在中等应变幅下提供了准确的预测,但由于激活了替代破坏机制,其有效性在较高应变下降低。总体而言,通过整合现有的计算方法,本研究为增材制造材料的疲劳寿命预测提供了微观结构敏感的见解和实用框架,为增材制造工艺和微观结构优化提供了潜在的途径,以实现卓越的疲劳性能。
{"title":"Microstructure-Induced Fatigue Scatter of Additively Manufactured Inconel 718: Insight from Multilevel Simulations and Dislocation-based Strain Gradient Crystal Plasticity","authors":"Xian-Chen Kuang, Wu-Gui Jiang, Long-Hui Mao, Zhi-Kai Wu, Fen-Cheng Liu, Xiang Zhou, Peng-Hang Ling, Yang-Cheng Zhang, Min Yi","doi":"10.1016/j.ijplas.2026.104632","DOIUrl":"https://doi.org/10.1016/j.ijplas.2026.104632","url":null,"abstract":"The fatigue performance of additively manufactured (AM) Inconel 718 is intrinsically governed by its grain morphology, necessitating a predictive understanding of the underlying plasticity-dominated mechanisms. To address this challenge, this study applies an integrated multilevel computational framework that explicitly bridges the process–structure–property–performance chain by coupling finite-element and cellular-automata (FE–CA) simulations of grain growth during laser powder bed fusion (LPBF), a deep neural network (DNN) for efficient material parameter calibration, and a strain-gradient crystal plasticity finite element (CPFE) model for fatigue life prediction. This unified framework enables, for the first time, a rigorous like-for-like comparison of three characteristic AM microstructures—equiaxed, columnar, and mixed grains—under a consistent computational and experimental calibration protocol, and thereby reveals new micromechanical insights into potential fatigue damage initiation from the plasticity perspective. Our simulations indicate that fatigue resistance is predominantly controlled by grain morphology and further modulated by morphology-induced anisotropy. Among them, equiaxed grains exhibit superior fatigue resistance to columnar and mixed grain morphologies, which is attributed to the activation of multiple slip systems and the resulting homogeneous deformation. In contrast, the strong texture in columnar grains gives rise to a pronounced “channeling effect”, leading to highly localized slip and a mismatch between regions of elevated plastic strain and actual damage accumulation. In terms of loading direction, the fatigue resistance under loading along the building direction (BD) is higher than that under loading along the transverse direction (TD). Crack initiation is predominantly predicted at high-angle grain boundaries and triple junctions, with the specific patterns highly sensitive to both grain morphology and loading direction. A key finding is the identification of a critical fatigue indicator parameter (FIP) threshold, beyond which fatigue life scatter intensifies significantly. While the CPFE model provides accurate predictions at intermediate strain amplitudes, its efficacy diminishes at higher strains due to the activation of alternative failure mechanisms. Overall, by integrating established computational methods, this work provides microstructure-sensitive insights and a practical framework for fatigue life prediction of AM materials, offering a potential pathway for AM process and microstructure optimization to achieve superior fatigue performance.","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"87 1","pages":""},"PeriodicalIF":9.8,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146101602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterogeneous precipitation evolution and dislocation accumulation in CNT/2024Al composites with dual heterostructure 双异质结构CNT/2024Al复合材料的非均相沉淀演化与位错积累
IF 9.8 1区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-01-31 DOI: 10.1016/j.ijplas.2026.104631
Jun Yan, Cunsheng Zhang, Zhenyu Liu, Yingzhi Li, Zhen Zhang, Liang Chen, Guoqun Zhao
{"title":"Heterogeneous precipitation evolution and dislocation accumulation in CNT/2024Al composites with dual heterostructure","authors":"Jun Yan, Cunsheng Zhang, Zhenyu Liu, Yingzhi Li, Zhen Zhang, Liang Chen, Guoqun Zhao","doi":"10.1016/j.ijplas.2026.104631","DOIUrl":"https://doi.org/10.1016/j.ijplas.2026.104631","url":null,"abstract":"","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"137 1","pages":""},"PeriodicalIF":9.8,"publicationDate":"2026-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146095705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-cryogenic and room temperature normalized impact toughness of laser additively manufactured Ti-6Al-4V and Ti-5Al-5Mo-5V-3Cr 激光增材制备Ti-6Al-4V和Ti-5Al-5Mo-5V-3Cr的超低温和室温正火冲击韧性
IF 9.8 1区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-01-31 DOI: 10.1016/j.ijplas.2026.104629
Lia Pribnow, Mika León Altmann, Thomas Wegener, Andree Irretier, Rainer Fechte-Heinen, Daniel Knoop, Anastasiya Tönjes
{"title":"Ultra-cryogenic and room temperature normalized impact toughness of laser additively manufactured Ti-6Al-4V and Ti-5Al-5Mo-5V-3Cr","authors":"Lia Pribnow, Mika León Altmann, Thomas Wegener, Andree Irretier, Rainer Fechte-Heinen, Daniel Knoop, Anastasiya Tönjes","doi":"10.1016/j.ijplas.2026.104629","DOIUrl":"https://doi.org/10.1016/j.ijplas.2026.104629","url":null,"abstract":"","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"92 1","pages":""},"PeriodicalIF":9.8,"publicationDate":"2026-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146095706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fatigue crack initiation mechanisms in Inconel 718 from MC carbide MC硬质合金Inconel 718疲劳裂纹萌生机制
IF 9.8 1区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-01-31 DOI: 10.1016/j.ijplas.2026.104630
Pandi Zhao, Zebang Zheng, Mei Zhan, Guang Zeng, Yilun Xu, Hongwei Li, Zhiyan Sun, Hai Xin, Yuyang Wang, M.W. Fu
{"title":"Fatigue crack initiation mechanisms in Inconel 718 from MC carbide","authors":"Pandi Zhao, Zebang Zheng, Mei Zhan, Guang Zeng, Yilun Xu, Hongwei Li, Zhiyan Sun, Hai Xin, Yuyang Wang, M.W. Fu","doi":"10.1016/j.ijplas.2026.104630","DOIUrl":"https://doi.org/10.1016/j.ijplas.2026.104630","url":null,"abstract":"","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"288 1","pages":""},"PeriodicalIF":9.8,"publicationDate":"2026-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146095704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A three-dimensional shear transformation zone theory for glassy polymers 玻璃聚合物的三维剪切转变区理论
IF 9.8 1区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-01-31 DOI: 10.1016/j.ijplas.2026.104628
Ji Lin, Wuyang Zhao, Rui Xiao
{"title":"A three-dimensional shear transformation zone theory for glassy polymers","authors":"Ji Lin, Wuyang Zhao, Rui Xiao","doi":"10.1016/j.ijplas.2026.104628","DOIUrl":"https://doi.org/10.1016/j.ijplas.2026.104628","url":null,"abstract":"","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"93 1","pages":""},"PeriodicalIF":9.8,"publicationDate":"2026-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146095707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Plasticity
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1