{"title":"Combining algorithm techniques with mechanical and acoustic profiles for the prediction of apples sensory attributes","authors":"Riccardo Ricci , Annachiara Berardinelli , Flavia Gasperi , Isabella Endrizzi , Farid Melgani , Eugenio Aprea","doi":"10.1016/j.chemolab.2024.105217","DOIUrl":null,"url":null,"abstract":"<div><p>The research work shows the potentiality of advanced linear and nonlinear learning algorithm techniques in the prediction of apples texture sensory attributes as “hardness”, “crunchiness”, “flouriness”, “fibrousness”, and “graininess”. Starting from the information contained in the entire mechanical and acoustic curves acquired during samples compression test, the prediction performances of five different statistical tools as Partial Least Squares regression (PLS), Multilayer Perceptron (MLP), Support Vector Regression (SVR) and Gaussian Process Regression (GPR) are shown and discussed.</p><p>All Predictive models validations evidence best accuracies for texture sensory attributes “hardness” and “crunchiness” and in general for GPR learning algorithm. By combining mechanical and acoustic profiles, 5-fold cross validations produce values of coefficient of determination R<sup>2</sup> up to 0.885 (GPR) and 0.840 (GPR), respectively for “hardness” and “crunchiness”. These results, comparable to those obtained by considering a large number of mechanical and acoustic parameters extracted from acquired profiles as predictive factors, evidence a new and reliable way for the prediction of texture sensory attributes of apples. The proposed approach can overcome the necessity to define, in advance, number and type of features to be calculated from instrumental texture profiles and can be easily implemented in an automatic process.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"253 ","pages":"Article 105217"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924001576","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The research work shows the potentiality of advanced linear and nonlinear learning algorithm techniques in the prediction of apples texture sensory attributes as “hardness”, “crunchiness”, “flouriness”, “fibrousness”, and “graininess”. Starting from the information contained in the entire mechanical and acoustic curves acquired during samples compression test, the prediction performances of five different statistical tools as Partial Least Squares regression (PLS), Multilayer Perceptron (MLP), Support Vector Regression (SVR) and Gaussian Process Regression (GPR) are shown and discussed.
All Predictive models validations evidence best accuracies for texture sensory attributes “hardness” and “crunchiness” and in general for GPR learning algorithm. By combining mechanical and acoustic profiles, 5-fold cross validations produce values of coefficient of determination R2 up to 0.885 (GPR) and 0.840 (GPR), respectively for “hardness” and “crunchiness”. These results, comparable to those obtained by considering a large number of mechanical and acoustic parameters extracted from acquired profiles as predictive factors, evidence a new and reliable way for the prediction of texture sensory attributes of apples. The proposed approach can overcome the necessity to define, in advance, number and type of features to be calculated from instrumental texture profiles and can be easily implemented in an automatic process.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.