The ultrasonic-assisted enzymatic extraction, characteristics and antioxidant activities of lychee nuclear polysaccharide

IF 8.7 1区 化学 Q1 ACOUSTICS Ultrasonics Sonochemistry Pub Date : 2024-08-21 DOI:10.1016/j.ultsonch.2024.107038
Zongyan Song , Gangliang Huang , Hualiang Huang
{"title":"The ultrasonic-assisted enzymatic extraction, characteristics and antioxidant activities of lychee nuclear polysaccharide","authors":"Zongyan Song ,&nbsp;Gangliang Huang ,&nbsp;Hualiang Huang","doi":"10.1016/j.ultsonch.2024.107038","DOIUrl":null,"url":null,"abstract":"<div><p>A response surface methodology (RSM) and one-factor method were established to investigate the optimum conditions for the extraction of lychee nuclear polysaccharides (LSP) by ultrasonic-assisted pectinase. The content of basic components in polysaccharides was determined. The antioxidant activity was well determined and compared the differences in the activities of the polysaccharides extracted by water extraction (LSP-HW) and those extracted at ultrasound-assisted enzyme (LSP-UAE). The activity of lychee nuclear polysaccharide increased with the increase of concentration. The anti-hydroxyl radical and anti-lipid peroxidation abilities of lychee nuclear polysaccharide were more excellent, and LSP-HW was slightly better than LSP-UAE in terms of activity, but the difference was not significant. In terms of solubility; LSP-HW without deproteinization was the best, followed by LSP-UAE, and the worst was LSP-UAE after deproteinization. The higher the glycoprotein content, the better the solubility of its polysaccharide. Compared with the existing extraction methods, this experiment greatly improved the extraction rate of lychee nuclear polysaccharides and further enriched the antioxidant activities of polysaccharides.</p></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350417724002864/pdfft?md5=4c71f6ed272d96d7f59cc34fae35650a&pid=1-s2.0-S1350417724002864-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417724002864","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

A response surface methodology (RSM) and one-factor method were established to investigate the optimum conditions for the extraction of lychee nuclear polysaccharides (LSP) by ultrasonic-assisted pectinase. The content of basic components in polysaccharides was determined. The antioxidant activity was well determined and compared the differences in the activities of the polysaccharides extracted by water extraction (LSP-HW) and those extracted at ultrasound-assisted enzyme (LSP-UAE). The activity of lychee nuclear polysaccharide increased with the increase of concentration. The anti-hydroxyl radical and anti-lipid peroxidation abilities of lychee nuclear polysaccharide were more excellent, and LSP-HW was slightly better than LSP-UAE in terms of activity, but the difference was not significant. In terms of solubility; LSP-HW without deproteinization was the best, followed by LSP-UAE, and the worst was LSP-UAE after deproteinization. The higher the glycoprotein content, the better the solubility of its polysaccharide. Compared with the existing extraction methods, this experiment greatly improved the extraction rate of lychee nuclear polysaccharides and further enriched the antioxidant activities of polysaccharides.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超声辅助酶法提取荔枝核多糖及其特性和抗氧化活性的研究
建立了响应面法(RSM)和单因素法研究超声波辅助果胶酶提取荔枝核多糖的最佳条件。测定了多糖中基本成分的含量。测定了荔枝核多糖的抗氧化活性,并比较了水提取多糖(LSP-HW)和超声辅助酶提取多糖(LSP-UAE)的抗氧化活性差异。荔枝核多糖的活性随浓度的增加而增加。荔枝核多糖的抗羟基自由基和抗脂质过氧化能力更强,LSP-HW的活性略优于LSP-UAE,但差异不显著。在溶解性方面,未脱蛋白的 LSP-HW 最好,其次是 LSP-UAE,最差的是脱蛋白后的 LSP-UAE。糖蛋白含量越高,其多糖的溶解度越好。与现有的提取方法相比,本实验大大提高了荔枝核多糖的提取率,进一步丰富了多糖的抗氧化活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ultrasonics Sonochemistry
Ultrasonics Sonochemistry 化学-化学综合
CiteScore
15.80
自引率
11.90%
发文量
361
审稿时长
59 days
期刊介绍: Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels. Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.
期刊最新文献
Multi-frequency power ultrasound (MFPU) pretreatment of crayfish (Procambarus clarkii): Effect on the enzymatic hydrolysis process and subsequent Maillard reaction Ultrasound effect on flavor profile of beef jerky produced with partial potassium salt substitute based on GC-IMS technology Ultrasound-assisted extraction of triterpenoids from Chaenomeles speciosa leaves: Process optimization, adsorptive enrichment, chemical profiling, and protection against ulcerative colitis Numerical investigation of three-dimensional effects of hydrodynamic cavitation in a Venturi tube Cutting behaviors of cortical bone ultrasonic vibration-assisted cutting immersed in physiological saline
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1