EQGraphNet: Advancing single-station earthquake magnitude estimation via deep graph networks with residual connections

Zhiguo Wang , Ziwei Chen , Huai Zhang
{"title":"EQGraphNet: Advancing single-station earthquake magnitude estimation via deep graph networks with residual connections","authors":"Zhiguo Wang ,&nbsp;Ziwei Chen ,&nbsp;Huai Zhang","doi":"10.1016/j.aiig.2024.100089","DOIUrl":null,"url":null,"abstract":"<div><p>Magnitude estimation is a critical task in seismology, and conventional methods usually require dense seismic station arrays to provide data with sufficient spatiotemporal distribution. In this context, we propose the Earthquake Graph Network (EQGraphNet) to enhance the performance of single-station magnitude estimation. The backbone of the proposed model consists of eleven convolutional neural network layers and ten RCGL modules, where a RCGL combines a Residual Connection and a Graph convolutional Layer capable of mitigating the over-smoothing problem and simultaneously extracting temporal features of seismic signals. Our work uses the STanford EArthquake Dataset for model training and performance testing. Compared with three existing deep learning models, EQGraphNet demonstrates improved accuracy for both local magnitude and duration magnitude scales. To evaluate the robustness, we add natural background noise to the model input and find that EQGraphNet achieves the best results, particularly for signals with lower signal-to-noise ratios. Additionally, by replacing various network components and comparing their estimation performances, we illustrate the contribution of each part of EQGraphNet, validating the rationality of our approach. We also demonstrate the generalization capability of our model across different earthquakes occurring environments, achieving mean errors of <span><math><mo>±</mo></math></span>0.1 units. Furthermore, by demonstrating the effectiveness of deeper architectures, this work encourages further exploration of deeper GNN models for both multi-station and single-station magnitude estimation.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"5 ","pages":"Article 100089"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666544124000303/pdfft?md5=c749cb3c43c7b43360a083719cc07ae7&pid=1-s2.0-S2666544124000303-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544124000303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Magnitude estimation is a critical task in seismology, and conventional methods usually require dense seismic station arrays to provide data with sufficient spatiotemporal distribution. In this context, we propose the Earthquake Graph Network (EQGraphNet) to enhance the performance of single-station magnitude estimation. The backbone of the proposed model consists of eleven convolutional neural network layers and ten RCGL modules, where a RCGL combines a Residual Connection and a Graph convolutional Layer capable of mitigating the over-smoothing problem and simultaneously extracting temporal features of seismic signals. Our work uses the STanford EArthquake Dataset for model training and performance testing. Compared with three existing deep learning models, EQGraphNet demonstrates improved accuracy for both local magnitude and duration magnitude scales. To evaluate the robustness, we add natural background noise to the model input and find that EQGraphNet achieves the best results, particularly for signals with lower signal-to-noise ratios. Additionally, by replacing various network components and comparing their estimation performances, we illustrate the contribution of each part of EQGraphNet, validating the rationality of our approach. We also demonstrate the generalization capability of our model across different earthquakes occurring environments, achieving mean errors of ±0.1 units. Furthermore, by demonstrating the effectiveness of deeper architectures, this work encourages further exploration of deeper GNN models for both multi-station and single-station magnitude estimation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EQGraphNet:通过具有残差连接的深度图网络推进单站地震震级估算
震级估计是地震学中的一项关键任务,传统方法通常需要密集的地震台阵列来提供具有足够时空分布的数据。在这种情况下,我们提出了地震图网络(EQGraphNet)来提高单台站震级估计的性能。该模型的骨干由 11 个卷积神经网络层和 10 个 RCGL 模块组成,其中 RCGL 结合了残差连接和图卷积层,能够缓解过度平滑问题,同时提取地震信号的时间特征。我们的工作使用斯坦福大学地震数据集进行模型训练和性能测试。与现有的三个深度学习模型相比,EQGraphNet 在局部震级和持续时间震级尺度上的准确性都有所提高。为了评估鲁棒性,我们在模型输入中添加了自然背景噪声,结果发现 EQGraphNet 取得了最佳结果,尤其是对于信噪比较低的信号。此外,通过替换各种网络组件并比较其估计性能,我们说明了 EQGraphNet 各部分的贡献,验证了我们方法的合理性。我们还证明了我们的模型在不同地震发生环境下的泛化能力,其平均误差为 ±0.1 个单位。此外,通过证明更深层架构的有效性,这项工作鼓励进一步探索用于多站和单站震级估计的更深层 GNN 模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Convolutional sparse coding network for sparse seismic time-frequency representation Research on the prediction method for fluvial-phase sandbody connectivity based on big data analysis--a case study of Bohai a oilfield Pore size classification and prediction based on distribution of reservoir fluid volumes utilizing well logs and deep learning algorithm in a complex lithology Benchmarking data handling strategies for landslide susceptibility modeling using random forest workflows A 3D convolutional neural network model with multiple outputs for simultaneously estimating the reactive transport parameters of sandstone from its CT images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1