Aperiodicity induced robust design of metabeams: Numerical and experimental studies

IF 7.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Mechanical Sciences Pub Date : 2024-08-22 DOI:10.1016/j.ijmecsci.2024.109650
{"title":"Aperiodicity induced robust design of metabeams: Numerical and experimental studies","authors":"","doi":"10.1016/j.ijmecsci.2024.109650","DOIUrl":null,"url":null,"abstract":"<div><p>Various design strategies have been explored to achieve wide local resonance (LR) bandgaps in acoustic metamaterials (AMMs), which have applications in vibration absorption and low-frequency noise mitigation. Conventionally, most methodologies model AMMs as periodic systems. Additionally, maintaining a reasonable resonator mass is desirable for many engineering applications. These factors restrict their possible design space and effectiveness. Such periodic structures are also sensitive to imperfections or manufacturing variabilities. To overcome these issues, we propose a novel methodology for optimal design of robust aperiodic AMMs. First, through a detailed parametric study, we establish a relationship among degree of aperiodicity, bandgap width, and its robustness. A robustness measure is defined to quantify the sensitivity of the bandgap with respect to manufacturing defects. We report two key observations: (i) aperiodicity helps in enhancing the bandgap and robustness, and (ii) the bandgap is not monotonically related to the robustness. These observations suggest the need for a multi-objective optimization in the aperiodic regime. Subsequently, all resonators’ mass, stiffness, and position are treated as design variables in a global optimization problem, which is solved using the genetic algorithm. This methodology offers users complete flexibility in imposing various design constraints.</p><p>Numerically, an AMM beam or metabeam is considered, comprising equally spaced double-cantilever-like resonators on a homogeneous host beam, producing an LR bandgap spanning 750–1000 Hz. Through multi-objective optimization, aperiodic designs with enhanced performance are achieved, with significantly wider and more robust bandgaps than periodic systems with similar mass. Interestingly, the global optima resides in the vicinity of the periodic configuration, as shown by parametric studies. The optimized aperiodic designs are validated through physical experiments on a vibrating beam. These findings open a new avenue for designing metamaterials.</p></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002074032400691X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Various design strategies have been explored to achieve wide local resonance (LR) bandgaps in acoustic metamaterials (AMMs), which have applications in vibration absorption and low-frequency noise mitigation. Conventionally, most methodologies model AMMs as periodic systems. Additionally, maintaining a reasonable resonator mass is desirable for many engineering applications. These factors restrict their possible design space and effectiveness. Such periodic structures are also sensitive to imperfections or manufacturing variabilities. To overcome these issues, we propose a novel methodology for optimal design of robust aperiodic AMMs. First, through a detailed parametric study, we establish a relationship among degree of aperiodicity, bandgap width, and its robustness. A robustness measure is defined to quantify the sensitivity of the bandgap with respect to manufacturing defects. We report two key observations: (i) aperiodicity helps in enhancing the bandgap and robustness, and (ii) the bandgap is not monotonically related to the robustness. These observations suggest the need for a multi-objective optimization in the aperiodic regime. Subsequently, all resonators’ mass, stiffness, and position are treated as design variables in a global optimization problem, which is solved using the genetic algorithm. This methodology offers users complete flexibility in imposing various design constraints.

Numerically, an AMM beam or metabeam is considered, comprising equally spaced double-cantilever-like resonators on a homogeneous host beam, producing an LR bandgap spanning 750–1000 Hz. Through multi-objective optimization, aperiodic designs with enhanced performance are achieved, with significantly wider and more robust bandgaps than periodic systems with similar mass. Interestingly, the global optima resides in the vicinity of the periodic configuration, as shown by parametric studies. The optimized aperiodic designs are validated through physical experiments on a vibrating beam. These findings open a new avenue for designing metamaterials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非周期性诱导的代谢梁稳健设计:数值和实验研究
为了在声学超材料(AMMs)中实现宽局部共振(LR)带隙,人们探索了各种设计策略,这些超材料可应用于振动吸收和低频降噪。传统上,大多数方法都将 AMM 建模为周期系统。此外,保持合理的谐振器质量也是许多工程应用的理想选择。这些因素限制了它们可能的设计空间和有效性。这种周期性结构对缺陷或制造变异也很敏感。为了克服这些问题,我们提出了一种新方法来优化设计稳健的非周期性 AMM。首先,通过详细的参数研究,我们建立了非周期性程度、带隙宽度及其鲁棒性之间的关系。我们定义了一种鲁棒性度量,以量化带隙对制造缺陷的敏感性。我们报告了两个重要观察结果:(i) 非周期性有助于增强带隙和稳健性;(ii) 带隙与稳健性并非单调相关。这些观察结果表明,需要在非周期性机制中进行多目标优化。随后,所有谐振器的质量、刚度和位置都被视为全局优化问题中的设计变量,并使用遗传算法加以解决。在数值上,我们考虑了一种 AMM 梁或元梁,它由均匀主梁上等间距的双悬臂谐振器组成,可产生 750-1000 Hz 的低频带隙。通过多目标优化,实现了性能更强的非周期性设计,其带隙明显比质量相近的周期性系统更宽、更稳健。有趣的是,如参数研究所示,全局最佳值位于周期配置附近。在振动梁上进行的物理实验验证了优化的非周期性设计。这些发现为超材料的设计开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Mechanical Sciences
International Journal of Mechanical Sciences 工程技术-工程:机械
CiteScore
12.80
自引率
17.80%
发文量
769
审稿时长
19 days
期刊介绍: The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering. The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture). Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content. In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.
期刊最新文献
Nonlinear dynamic behavior of a rotor-bearing system considering time-varying misalignment Energy absorption of the kirigami-inspired pyramid foldcore sandwich structures under low-velocity impact Modeling the coupled bubble-arc-droplet evolution in underwater flux-cored arc welding A GAN-based stepwise full-field mechanical prediction model for architected metamaterials Backward motion suppression in space-constrained piezoelectric pipeline robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1