In silico validation of a customizable fully-autonomous artificial pancreas with coordinated insulin, glucagon and rescue carbohydrates

IF 5.3 2区 医学 Q1 ENGINEERING, BIOMEDICAL Biocybernetics and Biomedical Engineering Pub Date : 2024-07-01 DOI:10.1016/j.bbe.2024.08.003
{"title":"In silico validation of a customizable fully-autonomous artificial pancreas with coordinated insulin, glucagon and rescue carbohydrates","authors":"","doi":"10.1016/j.bbe.2024.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial pancreas systems should be designed considering different patient profiles, which is challenging from a control theory perspective. In this paper, a flexible-hybrid dual-hormone control algorithm for an artificial pancreas is proposed. The algorithm handles announced/unannounced meals by means of a non-interacting feedforward scheme that safely incorporates prandial boluses. Also, a coordination strategy is employed to distribute the counter-regulatory actions, which can be delivered as a continuous glucagon infusion via an automated pump, as an oral rescue carbohydrate recommendation, or as a rescue glucagon dose recommendation to be administrated through a glucagon pen. The different configurations of the proposed controller were evaluated in silico using a 14-day virtual scenario with random meal intakes and exercise sessions, achieving above 80% time-in-range and low time spent in hypoglycemia.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0208521624000561/pdfft?md5=5dc60e4e8ea6556e7fccf8eae8cffa24&pid=1-s2.0-S0208521624000561-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521624000561","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial pancreas systems should be designed considering different patient profiles, which is challenging from a control theory perspective. In this paper, a flexible-hybrid dual-hormone control algorithm for an artificial pancreas is proposed. The algorithm handles announced/unannounced meals by means of a non-interacting feedforward scheme that safely incorporates prandial boluses. Also, a coordination strategy is employed to distribute the counter-regulatory actions, which can be delivered as a continuous glucagon infusion via an automated pump, as an oral rescue carbohydrate recommendation, or as a rescue glucagon dose recommendation to be administrated through a glucagon pen. The different configurations of the proposed controller were evaluated in silico using a 14-day virtual scenario with random meal intakes and exercise sessions, achieving above 80% time-in-range and low time spent in hypoglycemia.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对可协调胰岛素、胰高血糖素和救命碳水化合物的可定制全自主人工胰腺进行硅验证
人工胰腺系统的设计应考虑不同患者的情况,这从控制理论的角度来看具有挑战性。本文提出了一种灵活混合的人工胰腺双激素控制算法。该算法通过非交互式前馈方案处理已宣布/未宣布的膳食,并安全地将餐前胰岛素纳入其中。此外,该算法还采用了一种协调策略来分配反调节作用,可通过自动泵持续输注胰高血糖素、推荐口服救命碳水化合物或通过胰高血糖素笔推荐救命胰高血糖素剂量。利用随机进餐和运动的 14 天虚拟场景,对拟议控制器的不同配置进行了模拟评估,结果显示,控制器的有效时间超过 80%,低血糖时间较短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.50
自引率
6.20%
发文量
77
审稿时长
38 days
期刊介绍: Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.
期刊最新文献
Automating synaptic plasticity analysis: A deep learning approach to segmenting hippocampal field potential signal Probabilistic and explainable modeling of Phase–Phase Cross-Frequency Coupling patterns in EEG. Application to dyslexia diagnosis Skin cancer diagnosis using NIR spectroscopy data of skin lesions in vivo using machine learning algorithms Validation of a body sensor network for cardiorespiratory monitoring during dynamic activities Quantitative evaluation of the effect of circle of willis structures on cerebral hyperperfusion: A multi-scale model analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1