The investigation of mechanism isoniazid adsorption onto cassia fistula-based activated carbon

{"title":"The investigation of mechanism isoniazid adsorption onto cassia fistula-based activated carbon","authors":"","doi":"10.1016/j.sajce.2024.08.008","DOIUrl":null,"url":null,"abstract":"<div><p>The utilization of activated carbon as an efficient adsorbent is well-established, driven by its porous structure and expansive surface area. This study investigates the potential of Cassia fistula (Golden shower) as a precursor for activated carbon synthesis using K<sub>2</sub>CO<sub>3</sub> activation, leveraging its organic properties known for high porosity and adsorption capacity. This research aims to investigate the feasibility of utilizing Cassia fistula-derived activated carbon (GSAC) for isoniazid removal from water. The study encompasses a two-step activation process—chemical and physical—with varying parameters to optimize surface area and porosity. The carbonization process involves hydrothermal and pyrolysis techniques with controlled conditions. The temperature used in this study is based on the TGA analysis to examine its thermal stability. Batch experiments examine the adsorption equilibrium and kinetics of isoniazid onto GSAC samples, revealing high adsorption capacity and rapid equilibrium attainment by GSAC 1:1 (700°C). The study culminates in the identification of a strong chemical bond between GSAC and isoniazid, implying efficient adsorption potential as confirmed by FTIR and SEM analysis before and after adsorption. The adsorption characteristic is examined with an isotherm and kinetic model. The highest predicted GSAC capacity reaches 219,807 mg/g, emphasizing its promising adsorption capabilities. This work underscores Cassia fistula-based activated carbon as a viable, cost-effective, and eco-friendly adsorbent for isoniazid removal, with implications for diverse applications. The synthesis process parameters, activation methods, and insights into the adsorption mechanism contribute to the understanding of effective adsorbent production and enhance the potential of activated carbon for various industrial contexts.</p></div>","PeriodicalId":21926,"journal":{"name":"South African Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1026918524000970/pdfft?md5=cbb837d5230a8b21c88c86612f4949bf&pid=1-s2.0-S1026918524000970-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1026918524000970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The utilization of activated carbon as an efficient adsorbent is well-established, driven by its porous structure and expansive surface area. This study investigates the potential of Cassia fistula (Golden shower) as a precursor for activated carbon synthesis using K2CO3 activation, leveraging its organic properties known for high porosity and adsorption capacity. This research aims to investigate the feasibility of utilizing Cassia fistula-derived activated carbon (GSAC) for isoniazid removal from water. The study encompasses a two-step activation process—chemical and physical—with varying parameters to optimize surface area and porosity. The carbonization process involves hydrothermal and pyrolysis techniques with controlled conditions. The temperature used in this study is based on the TGA analysis to examine its thermal stability. Batch experiments examine the adsorption equilibrium and kinetics of isoniazid onto GSAC samples, revealing high adsorption capacity and rapid equilibrium attainment by GSAC 1:1 (700°C). The study culminates in the identification of a strong chemical bond between GSAC and isoniazid, implying efficient adsorption potential as confirmed by FTIR and SEM analysis before and after adsorption. The adsorption characteristic is examined with an isotherm and kinetic model. The highest predicted GSAC capacity reaches 219,807 mg/g, emphasizing its promising adsorption capabilities. This work underscores Cassia fistula-based activated carbon as a viable, cost-effective, and eco-friendly adsorbent for isoniazid removal, with implications for diverse applications. The synthesis process parameters, activation methods, and insights into the adsorption mechanism contribute to the understanding of effective adsorbent production and enhance the potential of activated carbon for various industrial contexts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
决明子活性炭吸附异烟肼的机理研究
活性炭的多孔结构和广阔的表面积使其成为一种高效的吸附剂。本研究利用决明子(金莲花)的高孔隙率和高吸附能力的有机特性,研究其作为前体使用 K2CO3 活化合成活性炭的潜力。本研究旨在探讨利用拳参衍生活性炭(GSAC)去除水中异烟肼的可行性。研究包括两步活化过程--化学和物理--通过改变参数来优化表面积和孔隙率。碳化过程包括在受控条件下的水热和热解技术。本研究中使用的温度基于 TGA 分析,以检查其热稳定性。批量实验检验了异烟肼在 GSAC 样品上的吸附平衡和动力学,结果表明 GSAC 1:1 (700°C)具有很高的吸附能力并能迅速达到平衡。研究最终确定了 GSAC 与异烟肼之间的强化学键,吸附前后的傅立叶变换红外光谱和扫描电镜分析也证实了这一点,这意味着 GSAC 具有高效的吸附潜力。等温线和动力学模型检验了吸附特性。预测的最高 GSAC 容量达到 219,807 mg/g,强调了其良好的吸附能力。这项研究表明,以决明子为基质的活性炭是一种可行、经济、环保的异烟肼吸附剂,具有广泛的应用前景。合成工艺参数、活化方法以及对吸附机理的深入研究有助于了解有效的吸附剂生产,并提高活性炭在各种工业环境中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
100
审稿时长
33 weeks
期刊介绍: The journal has a particular interest in publishing papers on the unique issues facing chemical engineering taking place in countries that are rich in resources but face specific technical and societal challenges, which require detailed knowledge of local conditions to address. Core topic areas are: Environmental process engineering • treatment and handling of waste and pollutants • the abatement of pollution, environmental process control • cleaner technologies • waste minimization • environmental chemical engineering • water treatment Reaction Engineering • modelling and simulation of reactors • transport phenomena within reacting systems • fluidization technology • reactor design Separation technologies • classic separations • novel separations Process and materials synthesis • novel synthesis of materials or processes, including but not limited to nanotechnology, ceramics, etc. Metallurgical process engineering and coal technology • novel developments related to the minerals beneficiation industry • coal technology Chemical engineering education • guides to good practice • novel approaches to learning • education beyond university.
期刊最新文献
Enhancing photocatalytic activity of Fe2O3/TiO2 with gelatin: A fuzzy logic analysis of mesoporosity and iron loading Drug loading methods and kinetic release models using of mesoporous silica nanoparticles as a drug delivery system: A review Tailoring structural and magnetic properties: Cd²⁺ and Cu²⁺ co-doped Ni-Zn ferrite nanoparticles via sol-gel auto-combustion Comparative study on groundwater quality assessment of Chennai District, Tamil Nadu during 2019-2020 Effect of hydraulic retention time and effluent recycle ratio on biogas production from POME using UASB-HCPB fermentor assisted with ultrafiltration membrane at mesophilic condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1