Homotopy properties of the complex of frames of a unitary space

IF 1 2区 数学 Q1 MATHEMATICS Journal of the London Mathematical Society-Second Series Pub Date : 2024-08-24 DOI:10.1112/jlms.12978
Kevin I. Piterman, Volkmar Welker
{"title":"Homotopy properties of the complex of frames of a unitary space","authors":"Kevin I. Piterman,&nbsp;Volkmar Welker","doi":"10.1112/jlms.12978","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> be a finite-dimensional vector space equipped with a nondegenerate Hermitian form over a field <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>${\\mathbb {K}}$</annotation>\n </semantics></math>. Let <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathcal {G}}(V)$</annotation>\n </semantics></math> be the graph with vertex set the one-dimensional nondegenerate subspaces of <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> and adjacency relation given by orthogonality. We give a complete description of when <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathcal {G}}(V)$</annotation>\n </semantics></math> is connected in terms of the dimension of <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> and the size of the ground field <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>${\\mathbb {K}}$</annotation>\n </semantics></math>. Furthermore, we prove that if <span></span><math>\n <semantics>\n <mrow>\n <mo>dim</mo>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n <mo>&gt;</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$\\dim (V) &amp;gt; 4$</annotation>\n </semantics></math>, then the clique complex <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathcal {F}}(V)$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathcal {G}}(V)$</annotation>\n </semantics></math> is simply connected. For finite fields <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>${\\mathbb {K}}$</annotation>\n </semantics></math>, we also compute the eigenvalues of the adjacency matrix of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathcal {G}}(V)$</annotation>\n </semantics></math>. Then, by Garland's method, we conclude that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mover>\n <mi>H</mi>\n <mo>∼</mo>\n </mover>\n <mi>m</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>F</mi>\n <mrow>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <mo>;</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\tilde{H}_m({\\mathcal {F}}(V);{\\mathbb {k}}) = 0$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>⩽</mo>\n <mi>m</mi>\n <mo>⩽</mo>\n <mo>dim</mo>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$0\\leqslant m\\leqslant \\dim (V)-3$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>${\\mathbb {k}}$</annotation>\n </semantics></math> is a field of characteristic 0, provided that <span></span><math>\n <semantics>\n <mrow>\n <mo>dim</mo>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <mn>2</mn>\n </msup>\n <mo>⩽</mo>\n <mrow>\n <mo>|</mo>\n <mi>K</mi>\n <mo>|</mo>\n </mrow>\n </mrow>\n <annotation>$\\dim (V)^2 \\leqslant |{\\mathbb {K}}|$</annotation>\n </semantics></math>. Under these assumptions, we deduce that the barycentric subdivision of <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathcal {F}}(V)$</annotation>\n </semantics></math> deformation retracts to the order complex of the certain rank selection of <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\mathcal {F}}(V)$</annotation>\n </semantics></math> that is Cohen–Macaulay over <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>${\\mathbb {k}}$</annotation>\n </semantics></math>. Finally, we apply our results to the Quillen poset of elementary abelian <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-subgroups of a finite group and to the study of geometric properties of the poset of nondegenerate subspaces of <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> and the poset of orthogonal decompositions of <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12978","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let V $V$ be a finite-dimensional vector space equipped with a nondegenerate Hermitian form over a field K ${\mathbb {K}}$ . Let G ( V ) ${\mathcal {G}}(V)$ be the graph with vertex set the one-dimensional nondegenerate subspaces of V $V$ and adjacency relation given by orthogonality. We give a complete description of when G ( V ) ${\mathcal {G}}(V)$ is connected in terms of the dimension of V $V$ and the size of the ground field K ${\mathbb {K}}$ . Furthermore, we prove that if dim ( V ) > 4 $\dim (V) &gt; 4$ , then the clique complex F ( V ) ${\mathcal {F}}(V)$ of G ( V ) ${\mathcal {G}}(V)$ is simply connected. For finite fields K ${\mathbb {K}}$ , we also compute the eigenvalues of the adjacency matrix of G ( V ) ${\mathcal {G}}(V)$ . Then, by Garland's method, we conclude that H m ( F ( V ) ; k ) = 0 $\tilde{H}_m({\mathcal {F}}(V);{\mathbb {k}}) = 0$ for all 0 m dim ( V ) 3 $0\leqslant m\leqslant \dim (V)-3$ , where k ${\mathbb {k}}$ is a field of characteristic 0, provided that dim ( V ) 2 | K | $\dim (V)^2 \leqslant |{\mathbb {K}}|$ . Under these assumptions, we deduce that the barycentric subdivision of F ( V ) ${\mathcal {F}}(V)$ deformation retracts to the order complex of the certain rank selection of F ( V ) ${\mathcal {F}}(V)$ that is Cohen–Macaulay over k ${\mathbb {k}}$ . Finally, we apply our results to the Quillen poset of elementary abelian p $p$ -subgroups of a finite group and to the study of geometric properties of the poset of nondegenerate subspaces of V $V$ and the poset of orthogonal decompositions of V $V$ .

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单元空间框架复数的同调性质
设 V $V$ 是一个有限维向量空间,其上有一个域 K ${mathbb {K}}$ 的非enerate 赫米提形式。让 G ( V ) ${mathcal {G}}(V)$ 是顶点集为 V $V$ 的一维非enerate 子空间且邻接关系由正交性给出的图。我们用 V $V$ 的维数和基场 K ${mathbb {K}}$ 的大小给出了 G ( V ) ${mathcal {G}}(V)$ 连接时的完整描述。此外,我们证明如果 dim ( V ) > 4 $\dim (V) &gt; 4$ ,那么 G ( V ) ${\mathcal {F}}(V)$ 的簇复数 F ( V ) ${\mathcal {G}}(V)$ 是简单相连的。对于有限域 K ${{mathbb {K}}$ ,我们也计算 G ( V ) ${\mathcal {G}}(V)$ 的邻接矩阵的特征值。然后,根据加兰方法,我们得出 H ∼ m ( F ( V ) ; k ) = 0 $\tilde{H}_m({\mathcal {F}}(V);{mathbb {k}}) = 0$ for all 0 ⩽ m ⩽ dim ( V ) - 3 $0\leqslant m\leqslant \dim (V)-3$, where k $\{mathbb {k}}$ is a field of characteristic 0、条件是 dim ( V ) 2 ⩽ | K | $\dim (V)^2 \leqslant |{\mathbb {K}}|$ 。在这些假设下,我们推导出 F ( V ) ${mathcal {F}}(V)$ 的重心细分形变回缩到 F ( V ) ${mathcal {F}}(V)$ 的一定秩选择的阶复数,该阶复数是在 k ${mathbb {k}} 上的 Cohen-Macaulay 。最后,我们将结果应用于有限群的基本无性 p $p$ 子群的奎伦正集,以及 V $V$ 的非enerate 子空间正集和 V $V$ 的正交分解正集的几何性质研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
期刊最新文献
Construction of varieties of low codimension with applications to moduli spaces of varieties of general type Graphs with nonnegative curvature outside a finite subset, harmonic functions, and number of ends Double covers of smooth quadric threefolds with Artin–Mumford obstructions to rationality Cusps of caustics by reflection in ellipses Corrigendum: The average analytic rank of elliptic curves with prescribed torsion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1