We prove that many relatively hyperbolic groups obtained by relative strict hyperbolization admit a cocompact action on a cubical complex. Under suitable assumptions on the peripheral subgroups, these groups are residually finite and even virtually special. We include some applications to the theory of manifolds, such as the construction of new non-positively curved Riemannian manifolds with residually finite fundamental group, and the existence of non-triangulable aspherical manifolds with virtually special fundamental group.
{"title":"Relative cubulation of relative strict hyperbolization","authors":"Jean-François Lafont, Lorenzo Ruffoni","doi":"10.1112/jlms.70093","DOIUrl":"https://doi.org/10.1112/jlms.70093","url":null,"abstract":"<p>We prove that many relatively hyperbolic groups obtained by relative strict hyperbolization admit a cocompact action on a <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>CAT</mo>\u0000 <mo>(</mo>\u0000 <mn>0</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$operatorname{CAT}(0)$</annotation>\u0000 </semantics></math> cubical complex. Under suitable assumptions on the peripheral subgroups, these groups are residually finite and even virtually special. We include some applications to the theory of manifolds, such as the construction of new non-positively curved Riemannian manifolds with residually finite fundamental group, and the existence of non-triangulable aspherical manifolds with virtually special fundamental group.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 4","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70093","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143741249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elena Cordero, Gianluca Giacchi, Eugenia Malinnikova
Hardy's uncertainty principle is a classical result in harmonic analysis, stating that a function in and its Fourier transform cannot both decay arbitrarily fast at infinity. In this paper, we extend this principle to the propagators of Schrödinger equations with quadratic Hamiltonians, known in the literature as metaplectic operators. These operators generalize the Fourier transform and have captured significant attention in recent years due to their wide-ranging applications in time-frequency analysis, quantum harmonic analysis, signal processing, and various other fields. However, the involved structure of these operators requires careful analysis, and most results obtained so far concern special propagators that can basically be reduced to rescaled Fourier transforms. The main contributions of this work are threefold: (1) we extend Hardy's uncertainty principle, covering all propagators of Schrödinger equations with quadratic Hamiltonians, (2) we provide concrete examples, such as fractional Fourier transforms, which arise when considering anisotropic harmonic oscillators, (3) we suggest Gaussian decay conditions in certain directions only, which are related to the geometry of the corresponding Hamiltonian flow.
{"title":"Hardy's uncertainty principle for Schrödinger equations with quadratic Hamiltonians","authors":"Elena Cordero, Gianluca Giacchi, Eugenia Malinnikova","doi":"10.1112/jlms.70134","DOIUrl":"https://doi.org/10.1112/jlms.70134","url":null,"abstract":"<p>Hardy's uncertainty principle is a classical result in harmonic analysis, stating that a function in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>d</mi>\u0000 </msup>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$L^2(mathbb {R}^d)$</annotation>\u0000 </semantics></math> and its Fourier transform cannot both decay arbitrarily fast at infinity. In this paper, we extend this principle to the propagators of Schrödinger equations with quadratic Hamiltonians, known in the literature as metaplectic operators. These operators generalize the Fourier transform and have captured significant attention in recent years due to their wide-ranging applications in time-frequency analysis, quantum harmonic analysis, signal processing, and various other fields. However, the involved structure of these operators requires careful analysis, and most results obtained so far concern special propagators that can basically be reduced to rescaled Fourier transforms. The main contributions of this work are threefold: (1) we extend Hardy's uncertainty principle, covering all propagators of Schrödinger equations with quadratic Hamiltonians, (2) we provide concrete examples, such as fractional Fourier transforms, which arise when considering anisotropic harmonic oscillators, (3) we suggest Gaussian decay conditions in certain directions only, which are related to the geometry of the corresponding Hamiltonian flow.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 4","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70134","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143741250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
José M. Conde-Alonso, Adrián M. González-Pérez, Javier Parcet, Eduardo Tablate
We establish regularity conditions for -boundedness of Fourier multipliers on the group von Neumann algebras of higher rank simple Lie groups. This provides a natural Hörmander–Mikhlin (HM) criterion in terms of Lie derivatives of the symbol and a metric given by the adjoint representation. In line with Lafforgue/de la Salle's rigidity theorem, our condition imposes certain decay of the symbol at infinity. It refines and vastly generalizes a recent result by Parcet, Ricard, and de la Salle for . Our approach is partly based on a sharp local HM theorem for arbitrary Lie groups, which follows in turn from recent estimates by the authors on singular non-Toeplitz Schur multipliers. We generalize the latter to arbitrary locally compact groups and refine the cocycle-based approach to Fourier multipliers in group algebras by Junge, Mei, and Parcet. A few related open problems are also discussed.
{"title":"A Hörmander–Mikhlin theorem for higher rank simple Lie groups","authors":"José M. Conde-Alonso, Adrián M. González-Pérez, Javier Parcet, Eduardo Tablate","doi":"10.1112/jlms.70137","DOIUrl":"https://doi.org/10.1112/jlms.70137","url":null,"abstract":"<p>We establish regularity conditions for <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>L</mi>\u0000 <mi>p</mi>\u0000 </msub>\u0000 <annotation>$L_p$</annotation>\u0000 </semantics></math>-boundedness of Fourier multipliers on the group von Neumann algebras of higher rank simple Lie groups. This provides a natural Hörmander–Mikhlin (HM) criterion in terms of Lie derivatives of the symbol and a metric given by the adjoint representation. In line with Lafforgue/de la Salle's rigidity theorem, our condition imposes certain decay of the symbol at infinity. It refines and vastly generalizes a recent result by Parcet, Ricard, and de la Salle for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 <msub>\u0000 <mi>L</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>R</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$S L_n(mathbf {R})$</annotation>\u0000 </semantics></math>. Our approach is partly based on a sharp local HM theorem for arbitrary Lie groups, which follows in turn from recent estimates by the authors on singular non-Toeplitz Schur multipliers. We generalize the latter to arbitrary locally compact groups and refine the cocycle-based approach to Fourier multipliers in group algebras by Junge, Mei, and Parcet. A few related open problems are also discussed.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 4","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143741467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guram Bezhanishvili, Nick Bezhanishvili, Joel Lucero-Bryan, Jan van Mill
We provide partial solutions to two problems posed by Shehtman concerning the modal logic of the Čech–Stone compactification of an ordinal space. We use the Continuum Hypothesis to give a finite axiomatization of the modal logic of , thus resolving Shehtman's first problem for . We also characterize modal logics arising from the Čech–Stone compactification of an ordinal provided the Cantor normal form of satisfies an additional condition. This gives a partial solution of Shehtman's second problem.
{"title":"On Shehtman's two problems","authors":"Guram Bezhanishvili, Nick Bezhanishvili, Joel Lucero-Bryan, Jan van Mill","doi":"10.1112/jlms.70090","DOIUrl":"https://doi.org/10.1112/jlms.70090","url":null,"abstract":"<p>We provide partial solutions to two problems posed by Shehtman concerning the modal logic of the Čech–Stone compactification of an ordinal space. We use the Continuum Hypothesis to give a finite axiomatization of the modal logic of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>β</mi>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mi>ω</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$beta (omega ^2)$</annotation>\u0000 </semantics></math>, thus resolving Shehtman's first problem for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>=</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$n=2$</annotation>\u0000 </semantics></math>. We also characterize modal logics arising from the Čech–Stone compactification of an ordinal <span></span><math>\u0000 <semantics>\u0000 <mi>γ</mi>\u0000 <annotation>$gamma$</annotation>\u0000 </semantics></math> provided the Cantor normal form of <span></span><math>\u0000 <semantics>\u0000 <mi>γ</mi>\u0000 <annotation>$gamma$</annotation>\u0000 </semantics></math> satisfies an additional condition. This gives a partial solution of Shehtman's second problem.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70090","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143689741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuri Bilu, Florian Luca, Joris Nieuwveld, Joël Ouaknine, James Worrell
We introduce the notion of a twisted rational zero of a nondegenerate linear recurrence sequence (LRS). We show that any nondegenerate LRS has only finitely many such twisted rational zeros. In the particular case of the Tribonacci sequence, we show that and are the only twisted rational zeros that are not integral zeros.
{"title":"Twisted rational zeros of linear recurrence sequences","authors":"Yuri Bilu, Florian Luca, Joris Nieuwveld, Joël Ouaknine, James Worrell","doi":"10.1112/jlms.70126","DOIUrl":"https://doi.org/10.1112/jlms.70126","url":null,"abstract":"<p>We introduce the notion of a twisted rational zero of a nondegenerate linear recurrence sequence (LRS). We show that any nondegenerate LRS has only finitely many such twisted rational zeros. In the particular case of the Tribonacci sequence, we show that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>/</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$1/3$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <mn>5</mn>\u0000 <mo>/</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$-5/3$</annotation>\u0000 </semantics></math> are the only twisted rational zeros that are not integral zeros.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70126","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143689354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p>We study classes of domains in <span></span><math> <semantics> <mrow> <msup> <mi>R</mi> <mrow> <mi>d</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> <mspace></mspace> <mi>d</mi> <mo>⩾</mo> <mn>2</mn> </mrow> <annotation>$mathbb {R}^{d+1}, d geqslant 2$</annotation> </semantics></math> with sufficiently flat boundaries that admit a decomposition or covering of bounded overlap by Lipschitz graph domains with controlled total surface area. This study is motivated by the following result proved by Peter Jones as a piece of his proof of the Analyst's Traveling Salesman Theorem in the complex plane: Any simply connected domain <span></span><math> <semantics> <mrow> <mi>Ω</mi> <mo>⊆</mo> <mi>C</mi> </mrow> <annotation>$Omega subseteq mathbb {C}$</annotation> </semantics></math> with finite boundary length <span></span><math> <semantics> <mrow> <msup> <mi>H</mi> <mn>1</mn> </msup> <mrow> <mo>(</mo> <mi>∂</mi> <mi>Ω</mi> <mo>)</mo> </mrow> <mo><</mo> <mi>∞</mi> </mrow> <annotation>$mathcal {H}^1(partial Omega) < infty$</annotation> </semantics></math> can be decomposed into Lipschitz graph domains with total boundary length at most <span></span><math> <semantics> <mrow> <mi>M</mi> <msup> <mi>H</mi> <mn>1</mn> </msup> <mrow> <mo>(</mo> <mi>∂</mi> <mi>Ω</mi> <mo>)</mo> </mrow> </mrow> <annotation>$Mmathcal {H}^1(partial Omega)$</annotation> </semantics></math> for some <span></span><math> <semantics> <mrow> <mi>M</mi> <mo>></mo> <mn>0</mn> </mrow> <annotation>$M > 0$</annotation> </semantics></math> independent of <span></span><math> <semantics> <mi>Ω</mi>
我们研究 R d + 1 , d ⩾ 2 $mathbb {R}^{d+1}, d geqslant 2$ 中具有足够平坦边界的域的类别,这些域允许由具有受控总表面积的 Lipschitz 图形域分解或覆盖有界重叠。彼得-琼斯(Peter Jones)在复平面中证明了 "分析师旅行推销员定理"(Analyst's Traveling Salesman Theorem),作为其中的一部分,他证明了以下结果,从而激发了这项研究:任何简单连通域 Ω ⊆ C $Omega subseteq mathbb {C}$ 都可以分解为边界长度有限的 Lipschitz 图域,边界总长度最多为 M H 1 ( ∂ Ω ) < ∞ $Mmathcal {H}^1(partial Omega) < infty$ ,对于某个与 Ω $Omega$ 无关的 M > 0 $M > 0$ 。在本文中,我们证明了具有满足均匀贝塔平方和约束的 Reifenberg 平面边界的域在更高维度上的类似 Lipschitz 分解结果。我们使用类似的技术来证明,具有一般 Reifenberg 平面或均匀可整型边界的域允许类似的 Lipschitz 分解,同时允许组成域具有有界重叠而不是不相交。
{"title":"Lipschitz decompositions of domains with bilaterally flat boundaries","authors":"Jared Krandel","doi":"10.1112/jlms.70128","DOIUrl":"https://doi.org/10.1112/jlms.70128","url":null,"abstract":"<p>We study classes of domains in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msup>\u0000 <mo>,</mo>\u0000 <mspace></mspace>\u0000 <mi>d</mi>\u0000 <mo>⩾</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$mathbb {R}^{d+1}, d geqslant 2$</annotation>\u0000 </semantics></math> with sufficiently flat boundaries that admit a decomposition or covering of bounded overlap by Lipschitz graph domains with controlled total surface area. This study is motivated by the following result proved by Peter Jones as a piece of his proof of the Analyst's Traveling Salesman Theorem in the complex plane: Any simply connected domain <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Ω</mi>\u0000 <mo>⊆</mo>\u0000 <mi>C</mi>\u0000 </mrow>\u0000 <annotation>$Omega subseteq mathbb {C}$</annotation>\u0000 </semantics></math> with finite boundary length <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>∂</mi>\u0000 <mi>Ω</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo><</mo>\u0000 <mi>∞</mi>\u0000 </mrow>\u0000 <annotation>$mathcal {H}^1(partial Omega) < infty$</annotation>\u0000 </semantics></math> can be decomposed into Lipschitz graph domains with total boundary length at most <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>M</mi>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>∂</mi>\u0000 <mi>Ω</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$Mmathcal {H}^1(partial Omega)$</annotation>\u0000 </semantics></math> for some <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>M</mi>\u0000 <mo>></mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$M > 0$</annotation>\u0000 </semantics></math> independent of <span></span><math>\u0000 <semantics>\u0000 <mi>Ω</mi>\u0000 ","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70128","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143689332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We give a presentation of the torus-equivariant (small) quantum -theory ring of flag manifolds of type , as the quotient of a polynomial ring by an explicit ideal. This result is the torus-equivariant version of our previous one, which gives a presentation of the nonequivariant quantum -theory ring of flag manifolds of type . However, the method of proof for the torus-equivariant one is entirely different from that for the nonequivariant one; our proof is based on the result in the limit, and uses Nakayama-type arguments to upgrade it to the quantum situation. Also, in contrast to the nonequivariant case in which we used the Chevalley formula, we make use of the inverse Chevalley formula for the torus-equivariant -group of semi-infinite flag manifolds to obtain relations that yield our presentation.
{"title":"A presentation of the torus-equivariant quantum \u0000 \u0000 K\u0000 $K$\u0000 -theory ring of flag manifolds of type \u0000 \u0000 A\u0000 $A$\u0000 , Part I: The defining ideal","authors":"Toshiaki Maeno, Satoshi Naito, Daisuke Sagaki","doi":"10.1112/jlms.70095","DOIUrl":"https://doi.org/10.1112/jlms.70095","url":null,"abstract":"<p>We give a presentation of the torus-equivariant (small) quantum <span></span><math>\u0000 <semantics>\u0000 <mi>K</mi>\u0000 <annotation>$K$</annotation>\u0000 </semantics></math>-theory ring of flag manifolds of type <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$A$</annotation>\u0000 </semantics></math>, as the quotient of a polynomial ring by an explicit ideal. This result is the torus-equivariant version of our previous one, which gives a presentation of the nonequivariant quantum <span></span><math>\u0000 <semantics>\u0000 <mi>K</mi>\u0000 <annotation>$K$</annotation>\u0000 </semantics></math>-theory ring of flag manifolds of type <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$A$</annotation>\u0000 </semantics></math>. However, the method of proof for the torus-equivariant one is entirely different from that for the nonequivariant one; our proof is based on the result in the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Q</mi>\u0000 <mo>=</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$Q = 0$</annotation>\u0000 </semantics></math> limit, and uses Nakayama-type arguments to upgrade it to the quantum situation. Also, in contrast to the nonequivariant case in which we used the Chevalley formula, we make use of the inverse Chevalley formula for the torus-equivariant <span></span><math>\u0000 <semantics>\u0000 <mi>K</mi>\u0000 <annotation>$K$</annotation>\u0000 </semantics></math>-group of semi-infinite flag manifolds to obtain relations that yield our presentation.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143689171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We prove conditions ensuring that a Lie ideal or an invariant additive subgroup in a ring contains all additive commutators. A crucial assumption is that the subgroup is fully noncentral, that is, its image in every quotient is noncentral. For a unital algebra over a field of characteristic where every additive commutator is a sum of square-zero elements, we show that a fully noncentral subspace is a Lie ideal if and only if it is invariant under all inner automorphisms. This applies in particular to zero-product balanced algebras.
{"title":"Fully noncentral Lie ideals and invariant additive subgroups in rings","authors":"Eusebio Gardella, Tsiu-Kwen Lee, Hannes Thiel","doi":"10.1112/jlms.70127","DOIUrl":"https://doi.org/10.1112/jlms.70127","url":null,"abstract":"<p>We prove conditions ensuring that a Lie ideal or an invariant additive subgroup in a ring contains all additive commutators. A crucial assumption is that the subgroup is fully noncentral, that is, its image in every quotient is noncentral. For a unital algebra over a field of characteristic <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>≠</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$ne 2$</annotation>\u0000 </semantics></math> where every additive commutator is a sum of square-zero elements, we show that a fully noncentral subspace is a Lie ideal if and only if it is invariant under all inner automorphisms. This applies in particular to zero-product balanced algebras.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70127","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143638899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p>We analyze the consistency and uniqueness of solution of the generalized <span></span><math> <semantics> <mi>★</mi> <annotation>$star$</annotation> </semantics></math>-Sylvester equation <span></span><math> <semantics> <mrow> <mi>A</mi> <mi>X</mi> <mi>B</mi> <mo>+</mo> <mi>C</mi> <msup> <mi>X</mi> <mi>★</mi> </msup> <mi>D</mi> <mo>=</mo> <mi>E</mi> </mrow> <annotation>$AXB+CX^star D=E$</annotation> </semantics></math>, with <span></span><math> <semantics> <mrow> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>C</mi> <mo>,</mo> <mi>D</mi> </mrow> <annotation>$A,B,C, D$</annotation> </semantics></math>, and <span></span><math> <semantics> <mi>E</mi> <annotation>$E$</annotation> </semantics></math> being complex matrices (and <span></span><math> <semantics> <mi>★</mi> <annotation>$star$</annotation> </semantics></math> being either the transpose or the conjugate transpose). In particular, we obtain characterizations for the equation to have at most one solution and to be consistent for any right-hand side. Such characterizations are given in terms of spectral properties of the matrix pencils <span></span><math> <semantics> <mfenced> <mtable> <mtr> <mtd> <mrow> <mi>λ</mi> <msup> <mi>D</mi> <mi>★</mi> </msup> </mrow> </mtd> <mtd> <msup> <mi>B</mi> <mi>★</mi> </msup> </mtd> </mtr> <mtr> <mtd> <mi>A</mi> </mtd> <mtd> <mrow> <mi>λ</mi> <mi>C</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <annotation>$left[begin{smallmatrix}lambda D^star & B^star A & lambda Cend{smallmatrix}right]$</annota
{"title":"Solvability and uniqueness of solution of generalized \u0000 \u0000 ★\u0000 $star$\u0000 -Sylvester equations with arbitrary coefficients","authors":"Fernando De Terán, Bruno Iannazzo","doi":"10.1112/jlms.70129","DOIUrl":"https://doi.org/10.1112/jlms.70129","url":null,"abstract":"<p>We analyze the consistency and uniqueness of solution of the generalized <span></span><math>\u0000 <semantics>\u0000 <mi>★</mi>\u0000 <annotation>$star$</annotation>\u0000 </semantics></math>-Sylvester equation <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>A</mi>\u0000 <mi>X</mi>\u0000 <mi>B</mi>\u0000 <mo>+</mo>\u0000 <mi>C</mi>\u0000 <msup>\u0000 <mi>X</mi>\u0000 <mi>★</mi>\u0000 </msup>\u0000 <mi>D</mi>\u0000 <mo>=</mo>\u0000 <mi>E</mi>\u0000 </mrow>\u0000 <annotation>$AXB+CX^star D=E$</annotation>\u0000 </semantics></math>, with <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>A</mi>\u0000 <mo>,</mo>\u0000 <mi>B</mi>\u0000 <mo>,</mo>\u0000 <mi>C</mi>\u0000 <mo>,</mo>\u0000 <mi>D</mi>\u0000 </mrow>\u0000 <annotation>$A,B,C, D$</annotation>\u0000 </semantics></math>, and <span></span><math>\u0000 <semantics>\u0000 <mi>E</mi>\u0000 <annotation>$E$</annotation>\u0000 </semantics></math> being complex matrices (and <span></span><math>\u0000 <semantics>\u0000 <mi>★</mi>\u0000 <annotation>$star$</annotation>\u0000 </semantics></math> being either the transpose or the conjugate transpose). In particular, we obtain characterizations for the equation to have at most one solution and to be consistent for any right-hand side. Such characterizations are given in terms of spectral properties of the matrix pencils <span></span><math>\u0000 <semantics>\u0000 <mfenced>\u0000 <mtable>\u0000 <mtr>\u0000 <mtd>\u0000 <mrow>\u0000 <mi>λ</mi>\u0000 <msup>\u0000 <mi>D</mi>\u0000 <mi>★</mi>\u0000 </msup>\u0000 </mrow>\u0000 </mtd>\u0000 <mtd>\u0000 <msup>\u0000 <mi>B</mi>\u0000 <mi>★</mi>\u0000 </msup>\u0000 </mtd>\u0000 </mtr>\u0000 <mtr>\u0000 <mtd>\u0000 <mi>A</mi>\u0000 </mtd>\u0000 <mtd>\u0000 <mrow>\u0000 <mi>λ</mi>\u0000 <mi>C</mi>\u0000 </mrow>\u0000 </mtd>\u0000 </mtr>\u0000 </mtable>\u0000 </mfenced>\u0000 <annotation>$left[begin{smallmatrix}lambda D^star & B^star A & lambda Cend{smallmatrix}right]$</annota","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143638898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}