{"title":"InDel variations and gene expression analysis related to Fusarium wilt resistance in Gossypium barbadense","authors":"Baojun Liu, Wanli Han, Jianyu Bai, Yu Yu, Xuwen Wang, Yanying Qu, Aixing Gu","doi":"10.1002/csc2.21330","DOIUrl":null,"url":null,"abstract":"<jats:italic>Fusarium</jats:italic> wilt resistance of <jats:italic>Gossypium barbadense</jats:italic> is very important to maintain its yield and quality, and to disease resistance breeding. Although many individual genes, which are quantitative trait loci associated with wilt resistance have been identified, knowledge of genes controlling wilt resistance in <jats:italic>G. barbadense</jats:italic> is still limited. In order to screen the InDel fragment related to <jats:italic>Fusarium</jats:italic> wilt resistance in <jats:italic>G. barbadense</jats:italic>, a genome‐wide association study was conducted using 110 recombinant inbred lines of Xinhai 14 (susceptible cotton) and 06–146 (resistant cotton). In this study, 207,040 high‐quality InDel loci were identified, of which 595 and 632 InDels were significantly associated (<jats:italic>p </jats:italic>< 1 × 10<jats:sup>−3</jats:sup>) with wilt resistance in <jats:italic>G. barbadense</jats:italic> in the additive and dominant effect module analyses, respectively. Combined transcriptome expression analysis within the FOV7 stably inherited <jats:italic>qFOV7‐D03‐1</jats:italic> interval identified three ≥2 bp InDels for two differentially expressed genes. qPCR analysis was used to further validate that the expression of <jats:italic>GB_D03G0204</jats:italic> and <jats:italic>GB_D03G0238</jats:italic> was significantly different in the parental, resistant, and high susceptibility varieties. The <jats:italic>GB_D03G0238</jats:italic> gene InDel was significant in both additive and dominant effect models, and the <jats:italic>GB_D03G0204</jats:italic> gene InDel was significantly associated with wilt resistance in <jats:italic>G. barbadense</jats:italic> in the dominant effect model. The InDel fragments related to wilt resistance in <jats:italic>G. barbadense</jats:italic> discovered in this study can help gain insights into the genetic basis of wilt resistance and improve cotton breeding with excellent wilt resistance and high fiber quality traits.","PeriodicalId":10849,"journal":{"name":"Crop Science","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/csc2.21330","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Fusarium wilt resistance of Gossypium barbadense is very important to maintain its yield and quality, and to disease resistance breeding. Although many individual genes, which are quantitative trait loci associated with wilt resistance have been identified, knowledge of genes controlling wilt resistance in G. barbadense is still limited. In order to screen the InDel fragment related to Fusarium wilt resistance in G. barbadense, a genome‐wide association study was conducted using 110 recombinant inbred lines of Xinhai 14 (susceptible cotton) and 06–146 (resistant cotton). In this study, 207,040 high‐quality InDel loci were identified, of which 595 and 632 InDels were significantly associated (p < 1 × 10−3) with wilt resistance in G. barbadense in the additive and dominant effect module analyses, respectively. Combined transcriptome expression analysis within the FOV7 stably inherited qFOV7‐D03‐1 interval identified three ≥2 bp InDels for two differentially expressed genes. qPCR analysis was used to further validate that the expression of GB_D03G0204 and GB_D03G0238 was significantly different in the parental, resistant, and high susceptibility varieties. The GB_D03G0238 gene InDel was significant in both additive and dominant effect models, and the GB_D03G0204 gene InDel was significantly associated with wilt resistance in G. barbadense in the dominant effect model. The InDel fragments related to wilt resistance in G. barbadense discovered in this study can help gain insights into the genetic basis of wilt resistance and improve cotton breeding with excellent wilt resistance and high fiber quality traits.
期刊介绍:
Articles in Crop Science are of interest to researchers, policy makers, educators, and practitioners. The scope of articles in Crop Science includes crop breeding and genetics; crop physiology and metabolism; crop ecology, production, and management; seed physiology, production, and technology; turfgrass science; forage and grazing land ecology and management; genomics, molecular genetics, and biotechnology; germplasm collections and their use; and biomedical, health beneficial, and nutritionally enhanced plants. Crop Science publishes thematic collections of articles across its scope and includes topical Review and Interpretation, and Perspectives articles.