NIR-II AIEgens for Infectious Diseases Phototheranostics

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-08-26 DOI:10.1002/anie.202414259
Dr. Dingyuan Yan, Dr. Zheng Li, Dr. Michelle M. S. Lee, Prof. Ben Zhong Tang, Prof. Dong Wang
{"title":"NIR-II AIEgens for Infectious Diseases Phototheranostics","authors":"Dr. Dingyuan Yan,&nbsp;Dr. Zheng Li,&nbsp;Dr. Michelle M. S. Lee,&nbsp;Prof. Ben Zhong Tang,&nbsp;Prof. Dong Wang","doi":"10.1002/anie.202414259","DOIUrl":null,"url":null,"abstract":"<p>Pathogenic infectious diseases have persistently posed significant threats to public health. Phototheranostics, which combines the functions of diagnostic imaging and therapy, presents an extremely promising solution to block the spread of pathogens as well as the outbreak of epidemics owing to its merits of a wide-spectrum of activity, high controllability, non-invasiveness, and difficult to acquire resistance. Among multifarious phototheranostic agents, second near-infrared (NIR-II, 1000–1700 nm) aggregation-induced emission luminogens (AIEgens) are notable by virtue of their deep penetration depth, excellent biocompatibility, balanced radiative and nonradiative decay and aggregation-enhanced theranostic performance, making them an ideal option for combating pathogens. This minireview provides a systematical summary of the latest advancements in NIR-II AIEgens with emphasis on the molecular design and nanoplatform formulation to fulfill high-efficiency in treating bacterial and viral pathogens, classified by disease models. Then, the current challenges, potential opportunities, and future research directions are presented to facilitate the further progress of this emerging field.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 51","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202414259","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Pathogenic infectious diseases have persistently posed significant threats to public health. Phototheranostics, which combines the functions of diagnostic imaging and therapy, presents an extremely promising solution to block the spread of pathogens as well as the outbreak of epidemics owing to its merits of a wide-spectrum of activity, high controllability, non-invasiveness, and difficult to acquire resistance. Among multifarious phototheranostic agents, second near-infrared (NIR-II, 1000–1700 nm) aggregation-induced emission luminogens (AIEgens) are notable by virtue of their deep penetration depth, excellent biocompatibility, balanced radiative and nonradiative decay and aggregation-enhanced theranostic performance, making them an ideal option for combating pathogens. This minireview provides a systematical summary of the latest advancements in NIR-II AIEgens with emphasis on the molecular design and nanoplatform formulation to fulfill high-efficiency in treating bacterial and viral pathogens, classified by disease models. Then, the current challenges, potential opportunities, and future research directions are presented to facilitate the further progress of this emerging field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于传染病光otheranostics 的 NIR-II AIEgens。
致病性传染病一直对公共卫生构成重大威胁。光热疗法集诊断成像和治疗功能于一体,具有活性广、可控性强、无创伤、不易产生抗药性等优点,是阻断病原体传播和流行病爆发的一种极具前景的解决方案。在五花八门的光热疗法制剂中,第二代近红外(NIR-II,1000-1700 纳米)聚集诱导发射发光剂(AIEgens)以其穿透深度深、生物相容性好、辐射衰减和非辐射衰减平衡、聚集增强治疗性能等优点而备受瞩目,成为抗击病原体的理想选择。本微综述系统总结了近红外-II AIEgens 的最新进展,重点介绍了分子设计和纳米平台配方,以实现高效治疗细菌和病毒病原体(按疾病模型分类)。然后,介绍了当前的挑战、潜在的机遇和未来的研究方向,以促进这一新兴领域的进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Lucas Foppa Fluorination from Surface to Bulk Stabilizing High Nickel Cathode Materials with Outstanding Electrochemical Performance Benzyl Ammonium Carbamates Undergo Two-Step Linker Cleavage and Improve the Properties of Antibody Conjugates Angewandte Chemie: One Journal, Many Faces Jordan Hobbs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1