Hepatoprotective potential of coconut inflorescence sap against paracetamol induced toxicity in hep G2 cell lines

IF 3.9 3区 医学 Q2 FOOD SCIENCE & TECHNOLOGY Food and Chemical Toxicology Pub Date : 2024-08-22 DOI:10.1016/j.fct.2024.114946
{"title":"Hepatoprotective potential of coconut inflorescence sap against paracetamol induced toxicity in hep G2 cell lines","authors":"","doi":"10.1016/j.fct.2024.114946","DOIUrl":null,"url":null,"abstract":"<div><p>Coconut Inflorescence Sap (CIS) is the sweet, oyster-white colored, non-fermented juice obtained from the immature inflorescence of the Coconut tree. Acetaminophen (N-acetyl-<em>p</em>-aminophenol, or paracetamol) is one of the most frequently used drugs worldwide as an antipyretic or analgesic. HepG2 cell lines were used as an experimental model for studying <em>in vitro</em> hepatotoxicity induced by Paracetamol. The present study aims to identify biologically active compounds of CIS using LCMS analysis and to elucidate the ameliorative potential of CIS in alleviating paracetamol-induced hepatotoxicity. LC-MS analysis revealed the presence of 17 bioactive compounds. HepG2 cells were pretreated with Paracetamol (20 mM) for inducing toxicity, and Silymarin at a concentration of 50 μg/ml was used as a standard drug. The morphological analysis and MTT assay showed effective recovery from toxicity in cells treated with CIS in a dose-dependent manner. CIS at 25 μg/ml potentially showed the highest percentage of inhibitory activity against the toxicity induced by paracetamol. The treatment with paracetamol significantly increased the indicators of liver toxicity - LDH, SGOT, SGPT, and Glut.S Transferase in the media.CIS administration also increased the total protein levels, SOD, and Catalase activity. The morphological analysis, MTT assay, cytocompatibility studies, determination of enzymatic activities, etc., confirms the significant hepatoprotective efficacy of CIS.</p></div>","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Chemical Toxicology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S027869152400512X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Coconut Inflorescence Sap (CIS) is the sweet, oyster-white colored, non-fermented juice obtained from the immature inflorescence of the Coconut tree. Acetaminophen (N-acetyl-p-aminophenol, or paracetamol) is one of the most frequently used drugs worldwide as an antipyretic or analgesic. HepG2 cell lines were used as an experimental model for studying in vitro hepatotoxicity induced by Paracetamol. The present study aims to identify biologically active compounds of CIS using LCMS analysis and to elucidate the ameliorative potential of CIS in alleviating paracetamol-induced hepatotoxicity. LC-MS analysis revealed the presence of 17 bioactive compounds. HepG2 cells were pretreated with Paracetamol (20 mM) for inducing toxicity, and Silymarin at a concentration of 50 μg/ml was used as a standard drug. The morphological analysis and MTT assay showed effective recovery from toxicity in cells treated with CIS in a dose-dependent manner. CIS at 25 μg/ml potentially showed the highest percentage of inhibitory activity against the toxicity induced by paracetamol. The treatment with paracetamol significantly increased the indicators of liver toxicity - LDH, SGOT, SGPT, and Glut.S Transferase in the media.CIS administration also increased the total protein levels, SOD, and Catalase activity. The morphological analysis, MTT assay, cytocompatibility studies, determination of enzymatic activities, etc., confirms the significant hepatoprotective efficacy of CIS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
椰子花序汁对扑热息痛诱导的肝 G2 细胞系毒性的保护潜力
椰子花序液(CIS)是从椰子树未成熟花序中提取的非发酵甜汁,呈蛎白色。对乙酰氨基酚(N-乙酰对氨基苯酚,或扑热息痛)是全球最常用的解热镇痛药物之一。HepG2 细胞系被用作研究扑热息痛体外诱导肝毒性的实验模型。本研究旨在利用 LCMS 分析鉴定 CIS 的生物活性化合物,并阐明 CIS 在减轻扑热息痛诱导的肝毒性方面的改善潜力。LC-MS 分析发现了 17 种生物活性化合物。用扑热息痛(20mM)预处理 HepG2 细胞以诱导毒性,并用浓度为 50μg/ml 的水飞蓟素作为标准药物。形态学分析和 MTT 分析表明,经 CIS 处理的细胞能以剂量依赖的方式有效地恢复毒性。浓度为 25 μg/ml 的 CIS 对扑热息痛毒性的抑制率最高。对乙酰氨基酚处理会明显增加培养基中的肝脏毒性指标--LDH、SGOT、SGPT 和谷丙转氨酶。形态学分析、MTT 试验、细胞相容性研究、酶活性测定等都证实了 CIS 具有显著的保肝功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Food and Chemical Toxicology
Food and Chemical Toxicology 工程技术-毒理学
CiteScore
10.90
自引率
4.70%
发文量
651
审稿时长
31 days
期刊介绍: Food and Chemical Toxicology (FCT), an internationally renowned journal, that publishes original research articles and reviews on toxic effects, in animals and humans, of natural or synthetic chemicals occurring in the human environment with particular emphasis on food, drugs, and chemicals, including agricultural and industrial safety, and consumer product safety. Areas such as safety evaluation of novel foods and ingredients, biotechnologically-derived products, and nanomaterials are included in the scope of the journal. FCT also encourages submission of papers on inter-relationships between nutrition and toxicology and on in vitro techniques, particularly those fostering the 3 Rs. The principal aim of the journal is to publish high impact, scholarly work and to serve as a multidisciplinary forum for research in toxicology. Papers submitted will be judged on the basis of scientific originality and contribution to the field, quality and subject matter. Studies should address at least one of the following: -Adverse physiological/biochemical, or pathological changes induced by specific defined substances -New techniques for assessing potential toxicity, including molecular biology -Mechanisms underlying toxic phenomena -Toxicological examinations of specific chemicals or consumer products, both those showing adverse effects and those demonstrating safety, that meet current standards of scientific acceptability. Authors must clearly and briefly identify what novel toxic effect (s) or toxic mechanism (s) of the chemical are being reported and what their significance is in the abstract. Furthermore, sufficient doses should be included in order to provide information on NOAEL/LOAEL values.
期刊最新文献
Update to RIFM fragrance ingredient safety assessment, octyl formate, CAS registry number 112-32-3 Pumpkin seed oil lessens the colchicine-induced altered sex male hormone balance, testicular oxidative status, sperm abnormalities, and collagen deposition in male rats via Caspase3/ Desmin/ PCNA modulation. Lactoferrin alleviates gentamicin-induced acute kidney injury in rats by suppressing ferroptosis: Highlight on ACSL4, SLC7A11, NCOA4, FSP1 pathways and miR-378a-3p, LINC00618 expression. LncRNA TUG1 regulates miR-34a-5p / SIRT6 to participate in benzene-induced hematotoxicity through PI3K / AKT /mTOR signaling pathway. CDKN1A Promotes Cis-induced AKI by Inducing Cytoplasmic ROS Production and Ferroptosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1