Zai-Fu Yao , Ilja G. Sligte , Richard Ridderinkhof
{"title":"Olympic team rowers and team swimmers show altered functional brain activation during working memory and action inhibition","authors":"Zai-Fu Yao , Ilja G. Sligte , Richard Ridderinkhof","doi":"10.1016/j.neuropsychologia.2024.108974","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>High-level expertise in team-sports is associated with superior performance on executive functions (EFs) such as working memory (WM) and action inhibition, and with altered activation of brain areas related to these EFs. In most such studies, athletes were sampled from the domain of dynamic (i.e., open-skill) team-sports (e.g., soccer players). Whether static (i.e., closed-skill) team-sports athletes (e.g., rowers and synchronized swimmers) also show superior EFs performance and differential EF-related functional brain activation remains unknown.</p></div><div><h3>Methods</h3><p>We recruited 14 elite closed-skill athletes, all national champions, and internationally competitive in various rowing disciplines, as well as 14 controls matched on gender, age, and education, and had them perform working memory and action inhibition (stop-signal) tasks during fMRI scanning.</p></div><div><h3>Results</h3><p>Group differences in performance in either task failed to obtain statistical significance, although athletes showed a numerical trend toward higher WM capacity than controls. Importantly, task-related BOLD responses suggested that Olympic closed-skill team athletes show stronger recruitment of brain areas that emphasize relatively stable task demands and weaker engagement of brain areas that emphasize rapidly changing demands imposed by extraneous stimulation.</p></div><div><h3>Conclusion</h3><p>Functional brain imaging data suggest elite closed-skill athletes may employ different cognitive strategies.</p></div>","PeriodicalId":19279,"journal":{"name":"Neuropsychologia","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropsychologia","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0028393224001891","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background
High-level expertise in team-sports is associated with superior performance on executive functions (EFs) such as working memory (WM) and action inhibition, and with altered activation of brain areas related to these EFs. In most such studies, athletes were sampled from the domain of dynamic (i.e., open-skill) team-sports (e.g., soccer players). Whether static (i.e., closed-skill) team-sports athletes (e.g., rowers and synchronized swimmers) also show superior EFs performance and differential EF-related functional brain activation remains unknown.
Methods
We recruited 14 elite closed-skill athletes, all national champions, and internationally competitive in various rowing disciplines, as well as 14 controls matched on gender, age, and education, and had them perform working memory and action inhibition (stop-signal) tasks during fMRI scanning.
Results
Group differences in performance in either task failed to obtain statistical significance, although athletes showed a numerical trend toward higher WM capacity than controls. Importantly, task-related BOLD responses suggested that Olympic closed-skill team athletes show stronger recruitment of brain areas that emphasize relatively stable task demands and weaker engagement of brain areas that emphasize rapidly changing demands imposed by extraneous stimulation.
Conclusion
Functional brain imaging data suggest elite closed-skill athletes may employ different cognitive strategies.
期刊介绍:
Neuropsychologia is an international interdisciplinary journal devoted to experimental and theoretical contributions that advance understanding of human cognition and behavior from a neuroscience perspective. The journal will consider for publication studies that link brain function with cognitive processes, including attention and awareness, action and motor control, executive functions and cognitive control, memory, language, and emotion and social cognition.