Unlocking maintenance-architecting STEP for maintenance and realizing remountable magnet joints.

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences Pub Date : 2024-10-09 Epub Date: 2024-08-26 DOI:10.1098/rsta.2023.0415
Adrian van Arkel, Chris Lamb, Harry Robinson, Yannik Dieudonné
{"title":"Unlocking maintenance-architecting STEP for maintenance and realizing remountable magnet joints.","authors":"Adrian van Arkel, Chris Lamb, Harry Robinson, Yannik Dieudonné","doi":"10.1098/rsta.2023.0415","DOIUrl":null,"url":null,"abstract":"<p><p>The architecture of the Spherical Tokamak for Energy Production (STEP) has been developed to enable a hybrid maintenance approach using ports in the vacuum vessel for a limited list of tasks that must be performed shortly after shutdown, and larger openings to simplify and speed up major refits. Robotic handling systems in zero-human entry facilities will prevent workers from being exposed to the most hazardous environments. While the approach is largely grounded in existing technologies, the scale and environment of STEP will require significant technology development. Notably, programmes have been established to develop service connections and in-vessel robotic technologies. The engineering integration of the maintenance strategy into the tokamak remains a priority, as does ongoing work to simplify and reduce the cost of the buildings required to facilitate maintenance. Remountable magnet joints are critical to ensuring life-limited magnet components can be replaced during the STEP lifetime and realizing the STEP maintenance strategy. It is a high-risk endeavour owing to the low technology maturity of the potential solutions and owing to the tough and intertwined technical challenges and constraints imposed by both the fundamental physics and the STEP requirements and architecture. An integrated design approach has been taken to balance many competing factors and integrate with interfacing systems, and a multi-faceted technology development programme has been established to address technical risk and to inform, verify and validate the STEP remountable magnet design. This article is part of the theme issue 'Delivering Fusion Energy - The Spherical Tokamak for Energy Production (STEP)'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2280","pages":"20230415"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423684/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2023.0415","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The architecture of the Spherical Tokamak for Energy Production (STEP) has been developed to enable a hybrid maintenance approach using ports in the vacuum vessel for a limited list of tasks that must be performed shortly after shutdown, and larger openings to simplify and speed up major refits. Robotic handling systems in zero-human entry facilities will prevent workers from being exposed to the most hazardous environments. While the approach is largely grounded in existing technologies, the scale and environment of STEP will require significant technology development. Notably, programmes have been established to develop service connections and in-vessel robotic technologies. The engineering integration of the maintenance strategy into the tokamak remains a priority, as does ongoing work to simplify and reduce the cost of the buildings required to facilitate maintenance. Remountable magnet joints are critical to ensuring life-limited magnet components can be replaced during the STEP lifetime and realizing the STEP maintenance strategy. It is a high-risk endeavour owing to the low technology maturity of the potential solutions and owing to the tough and intertwined technical challenges and constraints imposed by both the fundamental physics and the STEP requirements and architecture. An integrated design approach has been taken to balance many competing factors and integrate with interfacing systems, and a multi-faceted technology development programme has been established to address technical risk and to inform, verify and validate the STEP remountable magnet design. This article is part of the theme issue 'Delivering Fusion Energy - The Spherical Tokamak for Energy Production (STEP)'.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解锁维护--用于维护和实现可拆卸磁接头的 STEP 架构。
能源生产用球形托卡马克(STEP)的结构是为实现混合维护方法而开发的,利用真空容器中的端口来完成停机后不久必须执行的有限任务清单,并利用较大的开口来简化和加快重大改装。零人员进入设施中的机器人处理系统将防止工人暴露在最危险的环境中。虽然这种方法在很大程度上以现有技术为基础,但 STEP 的规模和环境将需要大量的技术开发。值得注意的是,已经制定了开发服务连接和船内机器人技术的计划。将维护策略纳入托卡马克的工程设计仍然是一个优先事项,简化和降低维护所需的建筑成本也是正在进行的工作。可拆卸磁铁接头对于确保在 STEP 生命周期内更换寿命有限的磁铁部件和实现 STEP 维护战略至关重要。这是一项高风险的工作,因为潜在解决方案的技术成熟度较低,而且由于基础物理学和 STEP 要求和结构所带来的严峻和相互交织的技术挑战和限制。已采取综合设计方法来平衡许多相互竞争的因素,并与接口系统集成,还制定了一项多方面的技术开发计划,以应对技术风险,并为 STEP 可移动磁体设计提供信息、进行验证和确认。本文是 "提供聚变能源--用于能源生产的球形托卡马克(STEP)"专题的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
期刊最新文献
Addressing the urban congestion challenge based on traffic bottlenecks. Analysing macroscopic traffic rhythms and city size in affluent cities: insights from a global panel data of 25 cities. Artefact design and societal worldview. Cities beyond proximity. Mapping sidewalk accessibility with smartphone imagery and Visual AI: a participatory approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1