{"title":"Tracking vigilance fluctuations in real-time: a sliding-window heart rate variability-based machine-learning approach.","authors":"Tian Xie, Ning Ma","doi":"10.1093/sleep/zsae199","DOIUrl":null,"url":null,"abstract":"<p><strong>Study objectives: </strong>Heart rate variability (HRV)-based machine learning models hold promise for real-world vigilance evaluation, yet their real-time applicability is limited by lengthy feature extraction times and reliance on subjective benchmarks. This study aimed to improve the objectivity and efficiency of HRV-based vigilance evaluation by associating HRV and behavior metrics through a sliding window approach.</p><p><strong>Methods: </strong>Forty-four healthy adults underwent psychomotor vigilance tasks under both well-rested and sleep-deprived conditions, with simultaneous electrocardiogram recording. A sliding-window approach (30 seconds length, 10 seconds step) was used for HRV feature extraction and behavior assessment. Repeated-measures ANOVA was used to examine how HRV related to objective vigilance levels. Stability selection technique was applied for feature selection, and the vigilance ground truth-high (fastest 40%), intermediate (middle 20%), and low (slowest 40%)-was determined based on each participant's range of performance. Four machine-learning classifiers-k-nearest neighbors, support vector machine (SVM), AdaBoost, and random forest-were trained and tested using cross-validation.</p><p><strong>Results: </strong>Fluctuated vigilance performance indicated pronounced state instability, particularly after sleep deprivation. Temporary decrements in performance were associated with a decrease in heart rate and an increase in time-domain heart rate variability. SVM achieved the best performance, with a cross-validated accuracy of 89% for binary classification of high versus low vigilance epochs. Overall accuracy dropped to 72% for three-class classification in leave-one-participant-out cross-validation, but SVM maintained a precision of 84% in identifying low-vigilance epochs.</p><p><strong>Conclusions: </strong>Sliding-window-based HRV metrics would effectively capture the fluctuations in vigilance during task execution, enabling more timely and accurate detection of performance decrement.</p>","PeriodicalId":22018,"journal":{"name":"Sleep","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sleep","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/sleep/zsae199","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Study objectives: Heart rate variability (HRV)-based machine learning models hold promise for real-world vigilance evaluation, yet their real-time applicability is limited by lengthy feature extraction times and reliance on subjective benchmarks. This study aimed to improve the objectivity and efficiency of HRV-based vigilance evaluation by associating HRV and behavior metrics through a sliding window approach.
Methods: Forty-four healthy adults underwent psychomotor vigilance tasks under both well-rested and sleep-deprived conditions, with simultaneous electrocardiogram recording. A sliding-window approach (30 seconds length, 10 seconds step) was used for HRV feature extraction and behavior assessment. Repeated-measures ANOVA was used to examine how HRV related to objective vigilance levels. Stability selection technique was applied for feature selection, and the vigilance ground truth-high (fastest 40%), intermediate (middle 20%), and low (slowest 40%)-was determined based on each participant's range of performance. Four machine-learning classifiers-k-nearest neighbors, support vector machine (SVM), AdaBoost, and random forest-were trained and tested using cross-validation.
Results: Fluctuated vigilance performance indicated pronounced state instability, particularly after sleep deprivation. Temporary decrements in performance were associated with a decrease in heart rate and an increase in time-domain heart rate variability. SVM achieved the best performance, with a cross-validated accuracy of 89% for binary classification of high versus low vigilance epochs. Overall accuracy dropped to 72% for three-class classification in leave-one-participant-out cross-validation, but SVM maintained a precision of 84% in identifying low-vigilance epochs.
Conclusions: Sliding-window-based HRV metrics would effectively capture the fluctuations in vigilance during task execution, enabling more timely and accurate detection of performance decrement.
期刊介绍:
SLEEP® publishes findings from studies conducted at any level of analysis, including:
Genes
Molecules
Cells
Physiology
Neural systems and circuits
Behavior and cognition
Self-report
SLEEP® publishes articles that use a wide variety of scientific approaches and address a broad range of topics. These may include, but are not limited to:
Basic and neuroscience studies of sleep and circadian mechanisms
In vitro and animal models of sleep, circadian rhythms, and human disorders
Pre-clinical human investigations, including the measurement and manipulation of sleep and circadian rhythms
Studies in clinical or population samples. These may address factors influencing sleep and circadian rhythms (e.g., development and aging, and social and environmental influences) and relationships between sleep, circadian rhythms, health, and disease
Clinical trials, epidemiology studies, implementation, and dissemination research.