Assessment of thoracic disc degeneration using dual-energy CT-based collagen maps.

IF 3.7 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Radiology Experimental Pub Date : 2024-08-26 DOI:10.1186/s41747-024-00500-x
Simon Bernatz, Alexander Tom Hoppe, Leon David Gruenewald, Vitali Koch, Simon S Martin, Lara Engelskirchen, Ivana Radic, Giuseppe Bucolo, Jennifer Gotta, Philipp Reschke, Renate M Hammerstingl, Jan-Erik Scholtz, Tatjana Gruber-Rouh, Katrin Eichler, Thomas J Vogl, Christian Booz, Ibrahim Yel, Scherwin Mahmoudi
{"title":"Assessment of thoracic disc degeneration using dual-energy CT-based collagen maps.","authors":"Simon Bernatz, Alexander Tom Hoppe, Leon David Gruenewald, Vitali Koch, Simon S Martin, Lara Engelskirchen, Ivana Radic, Giuseppe Bucolo, Jennifer Gotta, Philipp Reschke, Renate M Hammerstingl, Jan-Erik Scholtz, Tatjana Gruber-Rouh, Katrin Eichler, Thomas J Vogl, Christian Booz, Ibrahim Yel, Scherwin Mahmoudi","doi":"10.1186/s41747-024-00500-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We evaluated the role of dual-energy computed tomography (DECT)-based collagen maps in assessing thoracic disc degeneration.</p><p><strong>Methods: </strong>We performed a retrospective analysis of patients who underwent DECT and magnetic resonance imaging (MRI) of the thoracic spine within a 2-week period from July 2019 to October 2022. Thoracic disc degeneration was classified by three blinded radiologists into three Pfirrmann categories: no/mild (grade 1-2), moderate (grade 3-4), and severe (grade 5). The DECT performance was determined using MRI as a reference standard. Interreader reliability was assessed using intraclass correlation coefficient (ICC). Five-point Likert scales were used to assess diagnostic confidence and image quality.</p><p><strong>Results: </strong>In total, 612 intervertebral discs across 51 patients aged 68 ± 16 years (mean ± standard deviation), 28 males and 23 females, were assessed. MRI revealed 135 no/mildly degenerated discs (22.1%), 470 moderately degenerated discs (76.8%), and 7 severely degenerated discs (1.1%). DECT collagen maps achieved an overall accuracy of 1,483/1,838 (80.8%) for thoracic disc degeneration. Overall recall (sensitivity) was 331/405 (81.7%) for detecting no/mild degeneration, 1,134/1,410 (80.4%) for moderate degeneration, and 18/21 (85.7%) for severe degeneration. Interrater agreement was good (ICC = 0.89). Assessment of DECT-based collagen maps demonstrated high diagnostic confidence (median 4; interquartile range 3-4) and good image quality (median 4; interquartile range 4-4).</p><p><strong>Conclusion: </strong>DECT showed an overall 81% accuracy for disc degeneration by visualizing differences in the collagen content of thoracic discs.</p><p><strong>Relevance statement: </strong>Utilizing DECT-based collagen maps to distinguish various stages of thoracic disc degeneration could be clinically relevant for early detection of disc-related conditions. This approach may be particularly beneficial when MRI is contraindicated.</p><p><strong>Key points: </strong>A total of 612 intervertebral discs across 51 patients were retrospectively assessed with DECT, using MRI as a reference standard. DECT-based collagen maps allowed thoracic disc degeneration assessment achieving an overall 81% accuracy with good interrater agreement (ICC = 0.89). DECT-based collagen maps could be a good alternative in the case of contraindications to MRI.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":"8 1","pages":"95"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347509/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology Experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41747-024-00500-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: We evaluated the role of dual-energy computed tomography (DECT)-based collagen maps in assessing thoracic disc degeneration.

Methods: We performed a retrospective analysis of patients who underwent DECT and magnetic resonance imaging (MRI) of the thoracic spine within a 2-week period from July 2019 to October 2022. Thoracic disc degeneration was classified by three blinded radiologists into three Pfirrmann categories: no/mild (grade 1-2), moderate (grade 3-4), and severe (grade 5). The DECT performance was determined using MRI as a reference standard. Interreader reliability was assessed using intraclass correlation coefficient (ICC). Five-point Likert scales were used to assess diagnostic confidence and image quality.

Results: In total, 612 intervertebral discs across 51 patients aged 68 ± 16 years (mean ± standard deviation), 28 males and 23 females, were assessed. MRI revealed 135 no/mildly degenerated discs (22.1%), 470 moderately degenerated discs (76.8%), and 7 severely degenerated discs (1.1%). DECT collagen maps achieved an overall accuracy of 1,483/1,838 (80.8%) for thoracic disc degeneration. Overall recall (sensitivity) was 331/405 (81.7%) for detecting no/mild degeneration, 1,134/1,410 (80.4%) for moderate degeneration, and 18/21 (85.7%) for severe degeneration. Interrater agreement was good (ICC = 0.89). Assessment of DECT-based collagen maps demonstrated high diagnostic confidence (median 4; interquartile range 3-4) and good image quality (median 4; interquartile range 4-4).

Conclusion: DECT showed an overall 81% accuracy for disc degeneration by visualizing differences in the collagen content of thoracic discs.

Relevance statement: Utilizing DECT-based collagen maps to distinguish various stages of thoracic disc degeneration could be clinically relevant for early detection of disc-related conditions. This approach may be particularly beneficial when MRI is contraindicated.

Key points: A total of 612 intervertebral discs across 51 patients were retrospectively assessed with DECT, using MRI as a reference standard. DECT-based collagen maps allowed thoracic disc degeneration assessment achieving an overall 81% accuracy with good interrater agreement (ICC = 0.89). DECT-based collagen maps could be a good alternative in the case of contraindications to MRI.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用基于双能 CT 的胶原图评估胸椎椎间盘退变。
背景:我们评估了基于双能计算机断层扫描(DECT)的胶原图在评估胸椎椎间盘退变中的作用:我们对在2019年7月至2022年10月的两周内接受了胸椎双能计算机断层扫描(DECT)和磁共振成像(MRI)的患者进行了回顾性分析。胸椎椎间盘退变由三位盲放射科医生分为三个 Pfirrmann 类别:无/轻度(1-2 级)、中度(3-4 级)和重度(5 级)。DECT 性能以核磁共振成像作为参考标准。读片者之间的可靠性采用类内相关系数(ICC)进行评估。采用五点李克特量表评估诊断信心和图像质量:共对 51 名患者的 612 个椎间盘进行了评估,患者年龄为 68 ± 16 岁(平均 ± 标准差),其中男性 28 人,女性 23 人。磁共振成像显示,135 个椎间盘无/轻度退变(22.1%),470 个椎间盘中度退变(76.8%),7 个椎间盘严重退变(1.1%)。DECT胶原图对胸椎间盘退变的总体准确率为1,483/1,838(80.8%)。检测无/轻度退变的总体召回率(灵敏度)为 331/405(81.7%),检测中度退变的召回率(灵敏度)为 1,134/1,410 (80.4%),检测严重退变的召回率(灵敏度)为 18/21 (85.7%)。相互之间的一致性良好(ICC = 0.89)。对基于 DECT 的胶原图的评估显示,诊断可信度高(中位数为 4;四分位数间距为 3-4),图像质量好(中位数为 4;四分位数间距为 4-4):结论:通过观察胸椎椎间盘胶原蛋白含量的差异,DECT显示椎间盘退变的总体准确率为81%:利用基于 DECT 的胶原图来区分不同阶段的胸椎椎间盘退变,对于早期发现椎间盘相关疾病具有临床意义。这种方法在核磁共振成像禁忌症时可能特别有益:以核磁共振成像为参考标准,使用 DECT 对 51 名患者的 612 个椎间盘进行了回顾性评估。通过基于 DECT 的胶原图,胸椎椎间盘退变评估的总体准确率达到了 81%,且检查者之间具有良好的一致性(ICC = 0.89)。在有核磁共振成像禁忌症的情况下,基于DECT的胶原图是一种很好的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Radiology Experimental
European Radiology Experimental Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
6.70
自引率
2.60%
发文量
56
审稿时长
18 weeks
期刊最新文献
An AI deep learning algorithm for detecting pulmonary nodules on ultra-low-dose CT in an emergency setting: a reader study. Evaluation of pulmonary artery pressure, blood indices, and myocardial microcirculation in rats returning from high altitude to moderate altitude. Image biomarkers and explainable AI: handcrafted features versus deep learned features. Technical feasibility of automated blur detection in digital mammography using convolutional neural network. Quantification of breast biopsy clip marker artifact on routine breast MRI sequences: a phantom study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1