Alexis Deighton MacIntyre, Robert P Carlyon, Tobias Goehring
{"title":"Neural Decoding of the Speech Envelope: Effects of Intelligibility and Spectral Degradation.","authors":"Alexis Deighton MacIntyre, Robert P Carlyon, Tobias Goehring","doi":"10.1177/23312165241266316","DOIUrl":null,"url":null,"abstract":"<p><p>During continuous speech perception, endogenous neural activity becomes time-locked to acoustic stimulus features, such as the speech amplitude envelope. This speech-brain coupling can be decoded using non-invasive brain imaging techniques, including electroencephalography (EEG). Neural decoding may provide clinical use as an objective measure of stimulus encoding by the brain-for example during cochlear implant listening, wherein the speech signal is severely spectrally degraded. Yet, interplay between acoustic and linguistic factors may lead to top-down modulation of perception, thereby complicating audiological applications. To address this ambiguity, we assess neural decoding of the speech envelope under spectral degradation with EEG in acoustically hearing listeners (<i>n</i> = 38; 18-35 years old) using vocoded speech. We dissociate sensory encoding from higher-order processing by employing intelligible (English) and non-intelligible (Dutch) stimuli, with auditory attention sustained using a repeated-phrase detection task. Subject-specific and group decoders were trained to reconstruct the speech envelope from held-out EEG data, with decoder significance determined via random permutation testing. Whereas speech envelope reconstruction did not vary by spectral resolution, intelligible speech was associated with better decoding accuracy in general. Results were similar across subject-specific and group analyses, with less consistent effects of spectral degradation in group decoding. Permutation tests revealed possible differences in decoder statistical significance by experimental condition. In general, while robust neural decoding was observed at the individual and group level, variability within participants would most likely prevent the clinical use of such a measure to differentiate levels of spectral degradation and intelligibility on an individual basis.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":"28 ","pages":"23312165241266316"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345737/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Hearing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/23312165241266316","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
During continuous speech perception, endogenous neural activity becomes time-locked to acoustic stimulus features, such as the speech amplitude envelope. This speech-brain coupling can be decoded using non-invasive brain imaging techniques, including electroencephalography (EEG). Neural decoding may provide clinical use as an objective measure of stimulus encoding by the brain-for example during cochlear implant listening, wherein the speech signal is severely spectrally degraded. Yet, interplay between acoustic and linguistic factors may lead to top-down modulation of perception, thereby complicating audiological applications. To address this ambiguity, we assess neural decoding of the speech envelope under spectral degradation with EEG in acoustically hearing listeners (n = 38; 18-35 years old) using vocoded speech. We dissociate sensory encoding from higher-order processing by employing intelligible (English) and non-intelligible (Dutch) stimuli, with auditory attention sustained using a repeated-phrase detection task. Subject-specific and group decoders were trained to reconstruct the speech envelope from held-out EEG data, with decoder significance determined via random permutation testing. Whereas speech envelope reconstruction did not vary by spectral resolution, intelligible speech was associated with better decoding accuracy in general. Results were similar across subject-specific and group analyses, with less consistent effects of spectral degradation in group decoding. Permutation tests revealed possible differences in decoder statistical significance by experimental condition. In general, while robust neural decoding was observed at the individual and group level, variability within participants would most likely prevent the clinical use of such a measure to differentiate levels of spectral degradation and intelligibility on an individual basis.
Trends in HearingAUDIOLOGY & SPEECH-LANGUAGE PATHOLOGYOTORH-OTORHINOLARYNGOLOGY
CiteScore
4.50
自引率
11.10%
发文量
44
审稿时长
12 weeks
期刊介绍:
Trends in Hearing is an open access journal completely dedicated to publishing original research and reviews focusing on human hearing, hearing loss, hearing aids, auditory implants, and aural rehabilitation. Under its former name, Trends in Amplification, the journal established itself as a forum for concise explorations of all areas of translational hearing research by leaders in the field. Trends in Hearing has now expanded its focus to include original research articles, with the goal of becoming the premier venue for research related to human hearing and hearing loss.