Weighted power summation and contrast normalization mechanisms account for short-latency eye movements to motion and disparity of sine-wave gratings and broadband visual stimuli in humans.
{"title":"Weighted power summation and contrast normalization mechanisms account for short-latency eye movements to motion and disparity of sine-wave gratings and broadband visual stimuli in humans.","authors":"Boris M Sheliga, Edmond J FitzGibbon","doi":"10.1167/jov.24.8.14","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we show that the model we proposed earlier to account for the disparity vergence eye movements (disparity vergence responses, or DVRs) in response to horizontal and vertical disparity steps of white noise visual stimuli also provides an excellent description of the short-latency ocular following responses (OFRs) to broadband stimuli in the visual motion domain. In addition, we reanalyzed the data and applied the model to several earlier studies that used sine-wave gratings (single or a combination of two or three gratings) and white noise stimuli. The model provides a very good account of all of these data. The model postulates that the short-latency eye movements-OFRs and DVRs-can be accounted for by the operation of two factors: an excitatory drive, determined by a weighted sum of contributions of stimulus Fourier components, scaled by a global contrast normalization mechanism. The output of the operation of these two factors is then nonlinearly scaled by the total contrast of the stimulus. Despite different roles of disparity (horizontal and vertical) and motion signals in visual scene analyses, the earliest processing stages of these different signals appear to be very similar.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363211/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vision","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/jov.24.8.14","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we show that the model we proposed earlier to account for the disparity vergence eye movements (disparity vergence responses, or DVRs) in response to horizontal and vertical disparity steps of white noise visual stimuli also provides an excellent description of the short-latency ocular following responses (OFRs) to broadband stimuli in the visual motion domain. In addition, we reanalyzed the data and applied the model to several earlier studies that used sine-wave gratings (single or a combination of two or three gratings) and white noise stimuli. The model provides a very good account of all of these data. The model postulates that the short-latency eye movements-OFRs and DVRs-can be accounted for by the operation of two factors: an excitatory drive, determined by a weighted sum of contributions of stimulus Fourier components, scaled by a global contrast normalization mechanism. The output of the operation of these two factors is then nonlinearly scaled by the total contrast of the stimulus. Despite different roles of disparity (horizontal and vertical) and motion signals in visual scene analyses, the earliest processing stages of these different signals appear to be very similar.
期刊介绍:
Exploring all aspects of biological visual function, including spatial vision, perception,
low vision, color vision and more, spanning the fields of neuroscience, psychology and psychophysics.