The Use of Augmented Reality as an Educational Tool in Minimally Invasive Transforaminal Lumbar Interbody Fusion.

IF 1.7 4区 医学 Q3 CLINICAL NEUROLOGY Operative Neurosurgery Pub Date : 2025-02-01 Epub Date: 2024-08-26 DOI:10.1227/ons.0000000000001317
Franziska A Schmidt, Ibrahim Hussain, Blake Boadi, Fabian J Sommer, Claudius Thomé, Roger Härtl
{"title":"The Use of Augmented Reality as an Educational Tool in Minimally Invasive Transforaminal Lumbar Interbody Fusion.","authors":"Franziska A Schmidt, Ibrahim Hussain, Blake Boadi, Fabian J Sommer, Claudius Thomé, Roger Härtl","doi":"10.1227/ons.0000000000001317","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>One of the major challenges in training neurosurgical and orthopedic residents the technique for minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) is the lack of visualization of surgical landmarks (pedicle, pars, lamina). This is due to the limited access to the bony spine through a tubular retractor, in addition to a smaller working corridor or patient-specific factors such as bony overgrowth, disk space collapse, and listhesis. These factors increase the possibility for surgical error and prolonged surgery time. With augmented reality (AR), relevant surgical anatomy can be projected directly into the user's field of view through the microscope. The purpose of this study was to assess the utility, accuracy, efficiency, and precision of AR-guided MIS-TLIF and to determine its impact in spine surgery training.</p><p><strong>Methods: </strong>At 2 centers, 12 neurosurgical residents performed a one-level MIS-TLIF on a high-fidelity lumbar spine simulation model with and without AR projection into the microscope. For the MIS-TLIF procedures with AR, surgical landmarks were highlighted in different colors on preoperative image data . These landmarks were visualized in the spinal navigation application on the navigation monitor and in the microscope to confirm the relevant anatomy. Postprocedural surveys (National Aeronautics and Space Administration Task Load Index) were given to the residents.</p><p><strong>Results: </strong>Twelve residents were included in this trial. AR-guided procedures had a consistent impact on resident anatomical orientation and workload experience. Procedures performed without AR had a significantly higher mental demand ( P = .003 ) than with AR. Residents reported to a significantly higher rate that it was harder work for them to accomplish their level of performance without AR ( P = .019 ).</p><p><strong>Conclusion: </strong>AR can bring a meaningful value in MIS teaching and training to confirm relevant anatomy in situations where the surgeon will have less direct visual access. AR used in surgical simulation can also speed the learning curve.</p>","PeriodicalId":54254,"journal":{"name":"Operative Neurosurgery","volume":" ","pages":"183-192"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operative Neurosurgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1227/ons.0000000000001317","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objectives: One of the major challenges in training neurosurgical and orthopedic residents the technique for minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) is the lack of visualization of surgical landmarks (pedicle, pars, lamina). This is due to the limited access to the bony spine through a tubular retractor, in addition to a smaller working corridor or patient-specific factors such as bony overgrowth, disk space collapse, and listhesis. These factors increase the possibility for surgical error and prolonged surgery time. With augmented reality (AR), relevant surgical anatomy can be projected directly into the user's field of view through the microscope. The purpose of this study was to assess the utility, accuracy, efficiency, and precision of AR-guided MIS-TLIF and to determine its impact in spine surgery training.

Methods: At 2 centers, 12 neurosurgical residents performed a one-level MIS-TLIF on a high-fidelity lumbar spine simulation model with and without AR projection into the microscope. For the MIS-TLIF procedures with AR, surgical landmarks were highlighted in different colors on preoperative image data . These landmarks were visualized in the spinal navigation application on the navigation monitor and in the microscope to confirm the relevant anatomy. Postprocedural surveys (National Aeronautics and Space Administration Task Load Index) were given to the residents.

Results: Twelve residents were included in this trial. AR-guided procedures had a consistent impact on resident anatomical orientation and workload experience. Procedures performed without AR had a significantly higher mental demand ( P = .003 ) than with AR. Residents reported to a significantly higher rate that it was harder work for them to accomplish their level of performance without AR ( P = .019 ).

Conclusion: AR can bring a meaningful value in MIS teaching and training to confirm relevant anatomy in situations where the surgeon will have less direct visual access. AR used in surgical simulation can also speed the learning curve.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在微创经椎间孔腰椎椎体融合术中使用增强现实技术作为教育工具。
背景和目的:对神经外科和骨科住院医师进行微创经椎间孔腰椎椎体间融合术(MIS-TLIF)技术培训的主要挑战之一是缺乏手术标志(椎弓根、椎旁、椎板)的可视化。这是由于通过管状牵引器进入骨性脊柱的途径有限,此外还有较小的工作走廊或患者特异性因素,如骨性过度生长、椎间盘间隙塌陷和椎间盘突出。这些因素增加了手术失误和手术时间延长的可能性。利用增强现实技术(AR),相关的手术解剖图可以通过显微镜直接投射到用户的视野中。本研究旨在评估AR引导下MIS-TLIF的实用性、准确性、效率和精确性,并确定其对脊柱手术培训的影响:在 2 个中心,12 名神经外科住院医师在高保真腰椎仿真模型上进行了单层 MIS-TLIF,在显微镜下进行了 AR 投射,在未进行 AR 投射的情况下进行了单层 MIS-TLIF。在使用 AR 的 MIS-TLIF 手术中,术前图像数据会以不同颜色突出显示手术地标。在导航显示器上的脊柱导航应用程序和显微镜中可视化这些地标,以确认相关解剖结构。对住院医师进行术后调查(美国国家航空航天局任务负荷指数):结果:12 名住院医师参加了此次试验。AR引导的手术对住院医师的解剖定向和工作量体验具有一致的影响。与使用 AR 的手术相比,不使用 AR 的手术对精神的要求明显更高(P = .003)。住院医师报告说,在没有AR引导的情况下,他们要完成自己的水平要付出更多的努力(P = .019):结论:AR 在 MIS 教学和培训中具有重要价值,可在外科医生无法直接观察的情况下确认相关解剖结构。在手术模拟中使用 AR 还能加快学习曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Operative Neurosurgery
Operative Neurosurgery Medicine-Neurology (clinical)
CiteScore
3.10
自引率
13.00%
发文量
530
期刊介绍: Operative Neurosurgery is a bi-monthly, unique publication focusing exclusively on surgical technique and devices, providing practical, skill-enhancing guidance to its readers. Complementing the clinical and research studies published in Neurosurgery, Operative Neurosurgery brings the reader technical material that highlights operative procedures, anatomy, instrumentation, devices, and technology. Operative Neurosurgery is the practical resource for cutting-edge material that brings the surgeon the most up to date literature on operative practice and technique
期刊最新文献
Letter: The Role of Watertight Dural Closure in Supratentorial Craniotomy: A Systematic Review and Meta-Analysis. In Reply: The Role of Watertight Dural Closure in Supratentorial Craniotomy: A Systematic Review and Meta-Analysis. Treatment of Recurrent, Twice Coiled, Previously Ruptured Anterior Inferior Cerebellar Artery-Posterior Inferior Cerebellar Artery Aneurysm With Excision and End-to-End Anastomosis: 2-Dimensional Operative Video. Microsurgical Clip Ligation of a Large Anterior Communicating Artery Aneurysm Previously Treated With Woven Endobridge Device: 2-Dimensional Operative Video. A Cadaveric Feasibility Study of the Biportal Endoscopic Transfrontal Sinus Approach: A Minimally Invasive Approach to the Anterior Cranial Fossa.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1