Digital biomarkers in Parkinson's disease.

Advances in clinical chemistry Pub Date : 2024-01-01 Epub Date: 2024-06-22 DOI:10.1016/bs.acc.2024.06.005
Anastasia Bougea
{"title":"Digital biomarkers in Parkinson's disease.","authors":"Anastasia Bougea","doi":"10.1016/bs.acc.2024.06.005","DOIUrl":null,"url":null,"abstract":"<p><p>Digital biomarker (DB) assessments provide objective measures of daily life tasks and thus hold promise to improve diagnosis and monitoring of Parkinson's disease (PD) patients especially those with advanced stages. Data from DB studies can be used in advanced analytics such as Artificial Intelligence and Machine Learning to improve monitoring, treatment and outcomes. Although early development of inertial sensors as accelerometers and gyroscopes in smartphones provided encouraging results, the use of DB remains limited due to lack of standards, harmonization and consensus for analytical as well as clinical validation. Accordingly, a number of clinical trials have been developed to evaluate the performance of DB vs traditional assessment tools with the goal of monitoring disease progression, improving quality of life and outcomes. Herein, we update current evidence on the use of DB in PD and highlight potential benefits and limitations and provide suggestions for future research study.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"123 ","pages":"221-253"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in clinical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.acc.2024.06.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Digital biomarker (DB) assessments provide objective measures of daily life tasks and thus hold promise to improve diagnosis and monitoring of Parkinson's disease (PD) patients especially those with advanced stages. Data from DB studies can be used in advanced analytics such as Artificial Intelligence and Machine Learning to improve monitoring, treatment and outcomes. Although early development of inertial sensors as accelerometers and gyroscopes in smartphones provided encouraging results, the use of DB remains limited due to lack of standards, harmonization and consensus for analytical as well as clinical validation. Accordingly, a number of clinical trials have been developed to evaluate the performance of DB vs traditional assessment tools with the goal of monitoring disease progression, improving quality of life and outcomes. Herein, we update current evidence on the use of DB in PD and highlight potential benefits and limitations and provide suggestions for future research study.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
帕金森病的数字生物标记。
数字生物标记物(DB)评估提供了日常生活任务的客观测量方法,因此有望改善帕金森病(PD)患者(尤其是晚期患者)的诊断和监测。来自生物标记物研究的数据可用于人工智能和机器学习等高级分析,以改善监测、治疗和预后。虽然智能手机中惯性传感器(如加速计和陀螺仪)的早期开发取得了令人鼓舞的成果,但由于缺乏分析和临床验证的标准、协调和共识,DB 的使用仍然有限。因此,人们开发了许多临床试验来评估 DB 与传统评估工具的性能,目的是监测疾病进展、改善生活质量和预后。在此,我们将更新目前在帕金森病中使用 DB 的证据,强调其潜在的益处和局限性,并为未来的研究提供建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Natriuretic peptide testing strategies in heart failure: A 2023 update. Advances in endotoxin analysis. Defining allowable total error limits in the clinical laboratory. Gastrointestinal hormones: History, biology, and measurement. Molecular biology of SARS-CoV-2 and techniques of diagnosis and surveillance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1