首页 > 最新文献

Advances in clinical chemistry最新文献

英文 中文
Ion mobility spectrometry and ion mobility-mass spectrometry in clinical chemistry. 离子迁移谱法和离子迁移-质谱法在临床化学中的应用。
Pub Date : 2025-01-01 Epub Date: 2024-11-01 DOI: 10.1016/bs.acc.2024.10.003
Kyle E Lira, Jody C May, John A McLean

Advancements in clinical chemistry have major implications in terms of public health, prompting many clinicians to seek out chemical information to aid in diagnoses and treatments. While mass spectrometry (MS) and hyphenated-MS techniques such as LC-MS or tandem MS/MS have long been the analytical methods of choice for many clinical applications, these methods routinely demonstrate difficulty in differentiating between isomeric forms in complex matrices. Consequently, ion mobility spectrometry (IM), which differentiates molecules on the basis of size, shape, and charge, has demonstrated unique advantages in the broad application of stand-alone IM and hyphenated IM instruments towards clinical challenges. Here, we highlight representative IM applications and approaches and describe contemporary commercial offerings of IM technology and how these can be, or are currently being, applied to the field of clinical chemistry.

临床化学的进步对公共卫生有重大影响,促使许多临床医生寻找化学信息来帮助诊断和治疗。虽然质谱(MS)和联用质谱技术(如LC-MS或串联质谱/质谱)长期以来一直是许多临床应用的分析方法选择,但这些方法通常难以区分复杂基质中的异构体形式。因此,离子迁移谱法(IM)根据大小、形状和电荷来区分分子,在独立的IM和连字符的IM仪器广泛应用于临床挑战方面显示出独特的优势。在这里,我们重点介绍了具有代表性的IM应用和方法,并描述了IM技术的当代商业产品,以及这些技术如何能够或目前正在应用于临床化学领域。
{"title":"Ion mobility spectrometry and ion mobility-mass spectrometry in clinical chemistry.","authors":"Kyle E Lira, Jody C May, John A McLean","doi":"10.1016/bs.acc.2024.10.003","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.10.003","url":null,"abstract":"<p><p>Advancements in clinical chemistry have major implications in terms of public health, prompting many clinicians to seek out chemical information to aid in diagnoses and treatments. While mass spectrometry (MS) and hyphenated-MS techniques such as LC-MS or tandem MS/MS have long been the analytical methods of choice for many clinical applications, these methods routinely demonstrate difficulty in differentiating between isomeric forms in complex matrices. Consequently, ion mobility spectrometry (IM), which differentiates molecules on the basis of size, shape, and charge, has demonstrated unique advantages in the broad application of stand-alone IM and hyphenated IM instruments towards clinical challenges. Here, we highlight representative IM applications and approaches and describe contemporary commercial offerings of IM technology and how these can be, or are currently being, applied to the field of clinical chemistry.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"124 ","pages":"123-160"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143019596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preface.
Pub Date : 2025-01-01 DOI: 10.1016/S0065-2423(25)00025-3
Gregory S Makowski
{"title":"Preface.","authors":"Gregory S Makowski","doi":"10.1016/S0065-2423(25)00025-3","DOIUrl":"https://doi.org/10.1016/S0065-2423(25)00025-3","url":null,"abstract":"","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"125 ","pages":"xi-xii"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143485330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lupus nephritis: Biomarkers. 狼疮性肾炎:生物标志物。
Pub Date : 2025-01-01 Epub Date: 2024-11-07 DOI: 10.1016/bs.acc.2024.10.002
Chrisanna Dobrowolski, Shu Min Lao, Fadi Kharouf, Paula Parnizari Croci, Joan Wither, Dafna D Gladman, Laura Whitall Garcia, Arenn Jauhal, Zahi Touma

Lupus nephritis (LN) or renal involvement of systemic lupus erythematosus (SLE), is a common manifestation occurring in at least 50 % of SLE patients. LN remains a significant source of morbidity, often leading to progressive renal dysfunction and is a major cause of death in SLE. Despite these challenges, advances in the understanding of the pathogenesis and genetic underpinnings of LN have led to a commendable expansion in available treatments over the past decade. This chapter provides a foundation for the understanding LN pathogenesis, diagnosis, and epidemiology, and guides the reader through recent advances in biomarkers, genetic susceptibility of this intricate condition.

狼疮性肾炎(LN)或系统性红斑狼疮(SLE)的肾脏受累,是至少50% SLE患者的常见表现。LN仍然是发病率的重要来源,常导致进行性肾功能障碍,也是SLE患者死亡的主要原因。尽管存在这些挑战,但在过去十年中,对LN发病机制和遗传基础的理解取得了进展,导致了可用治疗方法的值得称赞的扩展。本章为理解LN的发病机制、诊断和流行病学提供了基础,并指导读者了解这种复杂疾病的生物标志物和遗传易感性的最新进展。
{"title":"Lupus nephritis: Biomarkers.","authors":"Chrisanna Dobrowolski, Shu Min Lao, Fadi Kharouf, Paula Parnizari Croci, Joan Wither, Dafna D Gladman, Laura Whitall Garcia, Arenn Jauhal, Zahi Touma","doi":"10.1016/bs.acc.2024.10.002","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.10.002","url":null,"abstract":"<p><p>Lupus nephritis (LN) or renal involvement of systemic lupus erythematosus (SLE), is a common manifestation occurring in at least 50 % of SLE patients. LN remains a significant source of morbidity, often leading to progressive renal dysfunction and is a major cause of death in SLE. Despite these challenges, advances in the understanding of the pathogenesis and genetic underpinnings of LN have led to a commendable expansion in available treatments over the past decade. This chapter provides a foundation for the understanding LN pathogenesis, diagnosis, and epidemiology, and guides the reader through recent advances in biomarkers, genetic susceptibility of this intricate condition.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"124 ","pages":"87-122"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143019599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular vesicles and microRNAs in cancer progression.
Pub Date : 2025-01-01 Epub Date: 2025-01-28 DOI: 10.1016/bs.acc.2024.11.004
Nicola S Orefice, Gianluca Petrillo, Claudia Pignataro, Martina Mascolo, Giada De Luca, Sara Verde, Francesca Pentimalli, Gerolama Condorelli, Cristina Quintavalle

Extracellular vesicles (EVs) have emerged as critical mediators of intercellular communication in cancer. These membranous structures, secreted by normal and cancerous cells, carry a cargo of bioactive molecules including microRNAs (miRNAs) that modulate various cellular processes. miRNAs are small non-coding RNAs that play pivotal roles in post-transcriptional gene regulation and have been implicated in cancer initiation, progression, and metastasis. In cancer, tumor-derived EVs transport specific miRNAs to recipient cells, modulating tumorigenesis, growth, angiogenesis, and metastasis. Dysregulation of miRNA expression profiles within EVs contributes to the acquisition of cancer hallmarks that include increased proliferation, survival, and migration. EV miRNAs influence the tumor microenvironment, promoting immune evasion, remodeling the extracellular matrix, and establishing pre-metastatic niches. Understanding the complex interplay between EVs, miRNAs, and cancer holds significant promise for developing novel diagnostic and therapeutic strategies. This chapter provides insights into the role of EV-mediated miRNA signaling in cancer pathogenesis, highlighting its potential as a biomarker for cancer detection, prognosis, and treatment response assessment.

{"title":"Extracellular vesicles and microRNAs in cancer progression.","authors":"Nicola S Orefice, Gianluca Petrillo, Claudia Pignataro, Martina Mascolo, Giada De Luca, Sara Verde, Francesca Pentimalli, Gerolama Condorelli, Cristina Quintavalle","doi":"10.1016/bs.acc.2024.11.004","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.11.004","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) have emerged as critical mediators of intercellular communication in cancer. These membranous structures, secreted by normal and cancerous cells, carry a cargo of bioactive molecules including microRNAs (miRNAs) that modulate various cellular processes. miRNAs are small non-coding RNAs that play pivotal roles in post-transcriptional gene regulation and have been implicated in cancer initiation, progression, and metastasis. In cancer, tumor-derived EVs transport specific miRNAs to recipient cells, modulating tumorigenesis, growth, angiogenesis, and metastasis. Dysregulation of miRNA expression profiles within EVs contributes to the acquisition of cancer hallmarks that include increased proliferation, survival, and migration. EV miRNAs influence the tumor microenvironment, promoting immune evasion, remodeling the extracellular matrix, and establishing pre-metastatic niches. Understanding the complex interplay between EVs, miRNAs, and cancer holds significant promise for developing novel diagnostic and therapeutic strategies. This chapter provides insights into the role of EV-mediated miRNA signaling in cancer pathogenesis, highlighting its potential as a biomarker for cancer detection, prognosis, and treatment response assessment.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"125 ","pages":"23-54"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143485325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spotting targets with 2D-DIGE proteomics.
Pub Date : 2025-01-01 Epub Date: 2024-12-17 DOI: 10.1016/bs.acc.2024.11.003
Kent Marshall, Yaw Twum, Yulu Li, Weimin Gao

Two-dimensional difference gel electrophoresis (2D-DIGE) has been a staple of protein studies for almost three decades since first described in 1997. Although the advent of omic technologies has greatly expanded protein research and discovery, 2D-DIGE has consistently been the mainstay in biomedical applications. Differential protein expression is a hallmark of many disease states and identification of these biomarkers can improve diagnosis, prognosis and treatment. In this review, we examine the use of 2D-DIGE in exploring the cellular environment in physiologic and pathophysiologic states. We highlight this technology in protein identification and quantification, functional modification and biochemical pathways of interest. 2D-DIGE remains a useful tool due low cost and high resolving power for comparative and quantitative purposes in assessing disease states and facilitating identification of unique and novel biomarkers.

二维差分凝胶电泳(2D-DIGE)自 1997 年首次被描述以来,近三十年来一直是蛋白质研究的主要方法。尽管 Omic 技术的出现极大地扩展了蛋白质的研究和发现,但二维差异凝胶电泳一直是生物医学应用的主流。蛋白质表达的差异是许多疾病的标志,识别这些生物标志物可以改善诊断、预后和治疗。在这篇综述中,我们将探讨 2D-DIGE 在探索生理和病理生理状态下的细胞环境中的应用。我们将重点介绍这项技术在蛋白质鉴定和定量、功能修饰和生化途径方面的应用。2D-DIGE 成本低、分辨率高,是评估疾病状态和鉴定独特新颖生物标记物时进行比较和定量的有用工具。
{"title":"Spotting targets with 2D-DIGE proteomics.","authors":"Kent Marshall, Yaw Twum, Yulu Li, Weimin Gao","doi":"10.1016/bs.acc.2024.11.003","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.11.003","url":null,"abstract":"<p><p>Two-dimensional difference gel electrophoresis (2D-DIGE) has been a staple of protein studies for almost three decades since first described in 1997. Although the advent of omic technologies has greatly expanded protein research and discovery, 2D-DIGE has consistently been the mainstay in biomedical applications. Differential protein expression is a hallmark of many disease states and identification of these biomarkers can improve diagnosis, prognosis and treatment. In this review, we examine the use of 2D-DIGE in exploring the cellular environment in physiologic and pathophysiologic states. We highlight this technology in protein identification and quantification, functional modification and biochemical pathways of interest. 2D-DIGE remains a useful tool due low cost and high resolving power for comparative and quantitative purposes in assessing disease states and facilitating identification of unique and novel biomarkers.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"125 ","pages":"1-22"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143485333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brain white matter damage biomarkers.
Pub Date : 2025-01-01 Epub Date: 2024-12-10 DOI: 10.1016/bs.acc.2024.11.005
Fardin Nabizadeh

White matter (WM), constituting nearly half of the human brain's mass, is pivotal for the rapid transmission of neural signals across different brain regions, significantly influencing cognitive processes like learning, memory, and problem-solving. The integrity of WM is essential for brain function, and its damage, which can occur due to conditions such as multiple sclerosis (MS), stroke, and traumatic brain injury, results in severe neurological deficits and cognitive decline. The primary objective of this book chapter is to discuss the clinical significance of fluid biomarkers in assessing WM damage within the central nervous system (CNS). It explores the biological underpinnings and pathological changes in WM due to various neurological conditions and details how alterations can be detected and quantified through fluid biomarkers. By examining biomarkers like Myelin Basic Protein (MBP), Neurofilament light chain (NFL), and others, the chapter highlights their role in enhancing diagnostic precision, monitoring disease progression, and guiding therapeutic interventions, thus providing crucial insights into maintaining WM integrity and preventing cognitive and physical disabilities.

{"title":"Brain white matter damage biomarkers.","authors":"Fardin Nabizadeh","doi":"10.1016/bs.acc.2024.11.005","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.11.005","url":null,"abstract":"<p><p>White matter (WM), constituting nearly half of the human brain's mass, is pivotal for the rapid transmission of neural signals across different brain regions, significantly influencing cognitive processes like learning, memory, and problem-solving. The integrity of WM is essential for brain function, and its damage, which can occur due to conditions such as multiple sclerosis (MS), stroke, and traumatic brain injury, results in severe neurological deficits and cognitive decline. The primary objective of this book chapter is to discuss the clinical significance of fluid biomarkers in assessing WM damage within the central nervous system (CNS). It explores the biological underpinnings and pathological changes in WM due to various neurological conditions and details how alterations can be detected and quantified through fluid biomarkers. By examining biomarkers like Myelin Basic Protein (MBP), Neurofilament light chain (NFL), and others, the chapter highlights their role in enhancing diagnostic precision, monitoring disease progression, and guiding therapeutic interventions, thus providing crucial insights into maintaining WM integrity and preventing cognitive and physical disabilities.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"125 ","pages":"55-91"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143485314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging biomarkers in Gaucher disease. 戈谢病新出现的生物标志物。
Pub Date : 2025-01-01 Epub Date: 2025-01-07 DOI: 10.1016/bs.acc.2024.11.001
Danielle M Luettel, Marcia R Terluk, Jaehyeok Roh, Neal J Weinreb, Reena V Kartha

Gaucher disease (GD) is a rare lysosomal disorder characterized by the accumulation of glycosphingolipids in macrophages resulting from glucocerebrosidase (GCase) deficiency. The accumulation of toxic substrates, which causes the hallmark symptoms of GD, is dependent on the extent of enzyme dysfunction. Accordingly, three distinct subtypes have been recognized, with type 1 GD (GD1) as the common and milder form, while types 2 (GD2) and 3 (GD3) are categorized as neuronopathic and severe. Manifestations variably include hepatosplenomegaly, anemia, thrombocytopenia, easy bruising, inflammation, bone pain and other skeletal pathologies, abnormal eye movements and neuropathy. Although the molecular basis of GD is relatively well understood, currently used biomarkers are nonspecific and inadequate for making finer distinctions between subtypes and in evaluating changes in disease status and guiding therapy. Thus, there is continued effort to investigate and identify potential biomarkers to improve GD diagnosis, monitoring and potential identification of novel therapeutic targets. Here, we provide a comprehensive review of emerging biomarkers in GD that can enhance current understanding and improve quality of life through better testing, disease management and treatment.

戈谢病(GD)是一种罕见的溶酶体疾病,其特征是糖脑苷酶(GCase)缺乏导致巨噬细胞中鞘糖脂积累。引起GD标志性症状的有毒底物的积累取决于酶功能障碍的程度。因此,已经识别出三种不同的亚型,1型GD (GD1)是常见的和较轻的形式,而2型(GD2)和3型(GD3)被归类为神经病变和严重。表现多样,包括肝脾肿大、贫血、血小板减少、易瘀伤、炎症、骨痛等骨骼病变、眼动异常和神经病变。虽然GD的分子基础已经被很好地理解,但目前使用的生物标志物是非特异性的,不足以对亚型进行更精细的区分,也不足以评估疾病状态的变化和指导治疗。因此,需要继续努力研究和鉴定潜在的生物标志物,以改善GD的诊断、监测和潜在的新治疗靶点的鉴定。在这里,我们全面回顾了GD中新兴的生物标志物,这些标志物可以通过更好的检测、疾病管理和治疗来增强当前的认识并改善生活质量。
{"title":"Emerging biomarkers in Gaucher disease.","authors":"Danielle M Luettel, Marcia R Terluk, Jaehyeok Roh, Neal J Weinreb, Reena V Kartha","doi":"10.1016/bs.acc.2024.11.001","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.11.001","url":null,"abstract":"<p><p>Gaucher disease (GD) is a rare lysosomal disorder characterized by the accumulation of glycosphingolipids in macrophages resulting from glucocerebrosidase (GCase) deficiency. The accumulation of toxic substrates, which causes the hallmark symptoms of GD, is dependent on the extent of enzyme dysfunction. Accordingly, three distinct subtypes have been recognized, with type 1 GD (GD1) as the common and milder form, while types 2 (GD2) and 3 (GD3) are categorized as neuronopathic and severe. Manifestations variably include hepatosplenomegaly, anemia, thrombocytopenia, easy bruising, inflammation, bone pain and other skeletal pathologies, abnormal eye movements and neuropathy. Although the molecular basis of GD is relatively well understood, currently used biomarkers are nonspecific and inadequate for making finer distinctions between subtypes and in evaluating changes in disease status and guiding therapy. Thus, there is continued effort to investigate and identify potential biomarkers to improve GD diagnosis, monitoring and potential identification of novel therapeutic targets. Here, we provide a comprehensive review of emerging biomarkers in GD that can enhance current understanding and improve quality of life through better testing, disease management and treatment.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"124 ","pages":"1-56"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143019594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visceral fat distribution: Interracial studies. 内脏脂肪分布:跨种族研究。
Pub Date : 2025-01-01 Epub Date: 2024-11-05 DOI: 10.1016/bs.acc.2024.10.001
Santasree Banerjee, Jiayin Lv, Chang He, Baiyu Qi, Weijie Ding, Kongrong Long, Junrong Chen, Jianping Wen, Peng Chen

Visceral adipose tissue, a type of abdominal adipose tissue, is highly involved in lipolysis. Because increased visceral adiposity is strongly associated with the metabolic complications related with obesity, such as type 2 diabetes and cardiovascular disease, there is a need for precise, targeted, personalized and site-specific measures clinically. Existing studies showed that ectopic fat accumulation may be characterized differently among different populations due to complex genetic architecture and non-genetic or epigenetic components, ie, Asians have more and Africans have less visceral fat vs Europeans. In this review, we summarize the effects of multiple non-genetic and genetic factors on visceral fat distribution across races. Non-genetic factors include diet, socioeconomic status, sex hormones and psychological factors, etc. We examine genetic factors of racial differences in visceral fat content as well as possible regulatory pathways associated with interracial visceral fat distribution. A comprehensive understanding of both genetic and non-genetic factors that influence the distribution of visceral fat among races, leads us to predict risk of abdominal obesity and metabolic diseases in ethnic groups that enables targeted interventions through accurate diagnosis and treatment as well as reduced risk of obesity-associated complications.

内脏脂肪组织,腹部脂肪组织的一种,高度参与脂肪分解。由于内脏脂肪增加与肥胖相关的代谢并发症(如2型糖尿病和心血管疾病)密切相关,因此临床上需要精确、有针对性、个性化和部位特异性的措施。现有研究表明,由于复杂的遗传结构和非遗传或表观遗传成分,不同人群的异位脂肪积累可能具有不同的特征,即与欧洲人相比,亚洲人的内脏脂肪较多,非洲人的内脏脂肪较少。在这篇综述中,我们总结了多种非遗传和遗传因素对不同种族内脏脂肪分布的影响。非遗传因素包括饮食、社会经济地位、性激素和心理因素等。我们研究了种族间内脏脂肪含量差异的遗传因素,以及与种族间内脏脂肪分布相关的可能的调节途径。全面了解影响种族间内脏脂肪分布的遗传和非遗传因素,使我们能够预测种族中腹部肥胖和代谢性疾病的风险,从而通过准确的诊断和治疗进行有针对性的干预,并降低肥胖相关并发症的风险。
{"title":"Visceral fat distribution: Interracial studies.","authors":"Santasree Banerjee, Jiayin Lv, Chang He, Baiyu Qi, Weijie Ding, Kongrong Long, Junrong Chen, Jianping Wen, Peng Chen","doi":"10.1016/bs.acc.2024.10.001","DOIUrl":"10.1016/bs.acc.2024.10.001","url":null,"abstract":"<p><p>Visceral adipose tissue, a type of abdominal adipose tissue, is highly involved in lipolysis. Because increased visceral adiposity is strongly associated with the metabolic complications related with obesity, such as type 2 diabetes and cardiovascular disease, there is a need for precise, targeted, personalized and site-specific measures clinically. Existing studies showed that ectopic fat accumulation may be characterized differently among different populations due to complex genetic architecture and non-genetic or epigenetic components, ie, Asians have more and Africans have less visceral fat vs Europeans. In this review, we summarize the effects of multiple non-genetic and genetic factors on visceral fat distribution across races. Non-genetic factors include diet, socioeconomic status, sex hormones and psychological factors, etc. We examine genetic factors of racial differences in visceral fat content as well as possible regulatory pathways associated with interracial visceral fat distribution. A comprehensive understanding of both genetic and non-genetic factors that influence the distribution of visceral fat among races, leads us to predict risk of abdominal obesity and metabolic diseases in ethnic groups that enables targeted interventions through accurate diagnosis and treatment as well as reduced risk of obesity-associated complications.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"124 ","pages":"57-85"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143018622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell-cell junctional proteins in cancer.
Pub Date : 2025-01-01 Epub Date: 2024-12-14 DOI: 10.1016/bs.acc.2024.11.006
Aparajita Das, Sarbani Giri, Pubali Dey

A hallmark change during carcinogenesis is disruption or dysregulation of cell-cell junctions. It enables a transformed cell to adopt mesenchymal phenotype and acquire higher potential to migrate and invade. This ultimately leads to cancer metastasis. During this process, junctional proteins undergo remarkable changes in terms of their expressional pattern, localization, and activity. De-localized junctional proteins may adopt atypical roles which might act to either suppress tumorigenesis or facilitate cancer development, depending on several factors. In this chapter, the authors attempt to know the expression pattern of junctional proteins in different types of cancer, understand its significance, and gather knowledge about the mechanisms by which they regulate tumorigenesis and cancer development.

癌变过程中的一个标志性变化是细胞-细胞连接的破坏或失调。它使转化细胞采用间充质表型,并获得更高的迁移和侵袭潜力。这最终导致癌症转移。在这一过程中,连接蛋白的表达模式、定位和活性都会发生显著变化。由于多种因素的影响,去定位的连接蛋白可能会发挥非典型作用,从而抑制肿瘤发生或促进癌症发展。在本章中,作者试图了解连接蛋白在不同类型癌症中的表达模式,理解其意义,并收集有关它们调控肿瘤发生和癌症发展的机制的知识。
{"title":"Cell-cell junctional proteins in cancer.","authors":"Aparajita Das, Sarbani Giri, Pubali Dey","doi":"10.1016/bs.acc.2024.11.006","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.11.006","url":null,"abstract":"<p><p>A hallmark change during carcinogenesis is disruption or dysregulation of cell-cell junctions. It enables a transformed cell to adopt mesenchymal phenotype and acquire higher potential to migrate and invade. This ultimately leads to cancer metastasis. During this process, junctional proteins undergo remarkable changes in terms of their expressional pattern, localization, and activity. De-localized junctional proteins may adopt atypical roles which might act to either suppress tumorigenesis or facilitate cancer development, depending on several factors. In this chapter, the authors attempt to know the expression pattern of junctional proteins in different types of cancer, understand its significance, and gather knowledge about the mechanisms by which they regulate tumorigenesis and cancer development.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"125 ","pages":"93-142"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143485323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preface. 前言。
Pub Date : 2025-01-01 DOI: 10.1016/S0065-2423(25)00008-3
Gregory S Makowski
{"title":"Preface.","authors":"Gregory S Makowski","doi":"10.1016/S0065-2423(25)00008-3","DOIUrl":"https://doi.org/10.1016/S0065-2423(25)00008-3","url":null,"abstract":"","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"124 ","pages":"xiii-xiv"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143019616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advances in clinical chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1