Pub Date : 2025-01-01Epub Date: 2024-11-01DOI: 10.1016/bs.acc.2024.10.003
Kyle E Lira, Jody C May, John A McLean
Advancements in clinical chemistry have major implications in terms of public health, prompting many clinicians to seek out chemical information to aid in diagnoses and treatments. While mass spectrometry (MS) and hyphenated-MS techniques such as LC-MS or tandem MS/MS have long been the analytical methods of choice for many clinical applications, these methods routinely demonstrate difficulty in differentiating between isomeric forms in complex matrices. Consequently, ion mobility spectrometry (IM), which differentiates molecules on the basis of size, shape, and charge, has demonstrated unique advantages in the broad application of stand-alone IM and hyphenated IM instruments towards clinical challenges. Here, we highlight representative IM applications and approaches and describe contemporary commercial offerings of IM technology and how these can be, or are currently being, applied to the field of clinical chemistry.
{"title":"Ion mobility spectrometry and ion mobility-mass spectrometry in clinical chemistry.","authors":"Kyle E Lira, Jody C May, John A McLean","doi":"10.1016/bs.acc.2024.10.003","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.10.003","url":null,"abstract":"<p><p>Advancements in clinical chemistry have major implications in terms of public health, prompting many clinicians to seek out chemical information to aid in diagnoses and treatments. While mass spectrometry (MS) and hyphenated-MS techniques such as LC-MS or tandem MS/MS have long been the analytical methods of choice for many clinical applications, these methods routinely demonstrate difficulty in differentiating between isomeric forms in complex matrices. Consequently, ion mobility spectrometry (IM), which differentiates molecules on the basis of size, shape, and charge, has demonstrated unique advantages in the broad application of stand-alone IM and hyphenated IM instruments towards clinical challenges. Here, we highlight representative IM applications and approaches and describe contemporary commercial offerings of IM technology and how these can be, or are currently being, applied to the field of clinical chemistry.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"124 ","pages":"123-160"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143019596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-07DOI: 10.1016/bs.acc.2024.10.002
Chrisanna Dobrowolski, Shu Min Lao, Fadi Kharouf, Paula Parnizari Croci, Joan Wither, Dafna D Gladman, Laura Whitall Garcia, Arenn Jauhal, Zahi Touma
Lupus nephritis (LN) or renal involvement of systemic lupus erythematosus (SLE), is a common manifestation occurring in at least 50 % of SLE patients. LN remains a significant source of morbidity, often leading to progressive renal dysfunction and is a major cause of death in SLE. Despite these challenges, advances in the understanding of the pathogenesis and genetic underpinnings of LN have led to a commendable expansion in available treatments over the past decade. This chapter provides a foundation for the understanding LN pathogenesis, diagnosis, and epidemiology, and guides the reader through recent advances in biomarkers, genetic susceptibility of this intricate condition.
{"title":"Lupus nephritis: Biomarkers.","authors":"Chrisanna Dobrowolski, Shu Min Lao, Fadi Kharouf, Paula Parnizari Croci, Joan Wither, Dafna D Gladman, Laura Whitall Garcia, Arenn Jauhal, Zahi Touma","doi":"10.1016/bs.acc.2024.10.002","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.10.002","url":null,"abstract":"<p><p>Lupus nephritis (LN) or renal involvement of systemic lupus erythematosus (SLE), is a common manifestation occurring in at least 50 % of SLE patients. LN remains a significant source of morbidity, often leading to progressive renal dysfunction and is a major cause of death in SLE. Despite these challenges, advances in the understanding of the pathogenesis and genetic underpinnings of LN have led to a commendable expansion in available treatments over the past decade. This chapter provides a foundation for the understanding LN pathogenesis, diagnosis, and epidemiology, and guides the reader through recent advances in biomarkers, genetic susceptibility of this intricate condition.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"124 ","pages":"87-122"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143019599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-01-07DOI: 10.1016/bs.acc.2024.11.001
Danielle M Luettel, Marcia R Terluk, Jaehyeok Roh, Neal J Weinreb, Reena V Kartha
Gaucher disease (GD) is a rare lysosomal disorder characterized by the accumulation of glycosphingolipids in macrophages resulting from glucocerebrosidase (GCase) deficiency. The accumulation of toxic substrates, which causes the hallmark symptoms of GD, is dependent on the extent of enzyme dysfunction. Accordingly, three distinct subtypes have been recognized, with type 1 GD (GD1) as the common and milder form, while types 2 (GD2) and 3 (GD3) are categorized as neuronopathic and severe. Manifestations variably include hepatosplenomegaly, anemia, thrombocytopenia, easy bruising, inflammation, bone pain and other skeletal pathologies, abnormal eye movements and neuropathy. Although the molecular basis of GD is relatively well understood, currently used biomarkers are nonspecific and inadequate for making finer distinctions between subtypes and in evaluating changes in disease status and guiding therapy. Thus, there is continued effort to investigate and identify potential biomarkers to improve GD diagnosis, monitoring and potential identification of novel therapeutic targets. Here, we provide a comprehensive review of emerging biomarkers in GD that can enhance current understanding and improve quality of life through better testing, disease management and treatment.
{"title":"Emerging biomarkers in Gaucher disease.","authors":"Danielle M Luettel, Marcia R Terluk, Jaehyeok Roh, Neal J Weinreb, Reena V Kartha","doi":"10.1016/bs.acc.2024.11.001","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.11.001","url":null,"abstract":"<p><p>Gaucher disease (GD) is a rare lysosomal disorder characterized by the accumulation of glycosphingolipids in macrophages resulting from glucocerebrosidase (GCase) deficiency. The accumulation of toxic substrates, which causes the hallmark symptoms of GD, is dependent on the extent of enzyme dysfunction. Accordingly, three distinct subtypes have been recognized, with type 1 GD (GD1) as the common and milder form, while types 2 (GD2) and 3 (GD3) are categorized as neuronopathic and severe. Manifestations variably include hepatosplenomegaly, anemia, thrombocytopenia, easy bruising, inflammation, bone pain and other skeletal pathologies, abnormal eye movements and neuropathy. Although the molecular basis of GD is relatively well understood, currently used biomarkers are nonspecific and inadequate for making finer distinctions between subtypes and in evaluating changes in disease status and guiding therapy. Thus, there is continued effort to investigate and identify potential biomarkers to improve GD diagnosis, monitoring and potential identification of novel therapeutic targets. Here, we provide a comprehensive review of emerging biomarkers in GD that can enhance current understanding and improve quality of life through better testing, disease management and treatment.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"124 ","pages":"1-56"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143019594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Visceral adipose tissue, a type of abdominal adipose tissue, is highly involved in lipolysis. Because increased visceral adiposity is strongly associated with the metabolic complications related with obesity, such as type 2 diabetes and cardiovascular disease, there is a need for precise, targeted, personalized and site-specific measures clinically. Existing studies showed that ectopic fat accumulation may be characterized differently among different populations due to complex genetic architecture and non-genetic or epigenetic components, ie, Asians have more and Africans have less visceral fat vs Europeans. In this review, we summarize the effects of multiple non-genetic and genetic factors on visceral fat distribution across races. Non-genetic factors include diet, socioeconomic status, sex hormones and psychological factors, etc. We examine genetic factors of racial differences in visceral fat content as well as possible regulatory pathways associated with interracial visceral fat distribution. A comprehensive understanding of both genetic and non-genetic factors that influence the distribution of visceral fat among races, leads us to predict risk of abdominal obesity and metabolic diseases in ethnic groups that enables targeted interventions through accurate diagnosis and treatment as well as reduced risk of obesity-associated complications.
{"title":"Visceral fat distribution: Interracial studies.","authors":"Santasree Banerjee, Jiayin Lv, Chang He, Baiyu Qi, Weijie Ding, Kongrong Long, Junrong Chen, Jianping Wen, Peng Chen","doi":"10.1016/bs.acc.2024.10.001","DOIUrl":"10.1016/bs.acc.2024.10.001","url":null,"abstract":"<p><p>Visceral adipose tissue, a type of abdominal adipose tissue, is highly involved in lipolysis. Because increased visceral adiposity is strongly associated with the metabolic complications related with obesity, such as type 2 diabetes and cardiovascular disease, there is a need for precise, targeted, personalized and site-specific measures clinically. Existing studies showed that ectopic fat accumulation may be characterized differently among different populations due to complex genetic architecture and non-genetic or epigenetic components, ie, Asians have more and Africans have less visceral fat vs Europeans. In this review, we summarize the effects of multiple non-genetic and genetic factors on visceral fat distribution across races. Non-genetic factors include diet, socioeconomic status, sex hormones and psychological factors, etc. We examine genetic factors of racial differences in visceral fat content as well as possible regulatory pathways associated with interracial visceral fat distribution. A comprehensive understanding of both genetic and non-genetic factors that influence the distribution of visceral fat among races, leads us to predict risk of abdominal obesity and metabolic diseases in ethnic groups that enables targeted interventions through accurate diagnosis and treatment as well as reduced risk of obesity-associated complications.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"124 ","pages":"57-85"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143018622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/S0065-2423(25)00008-3
Gregory S Makowski
{"title":"Preface.","authors":"Gregory S Makowski","doi":"10.1016/S0065-2423(25)00008-3","DOIUrl":"https://doi.org/10.1016/S0065-2423(25)00008-3","url":null,"abstract":"","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"124 ","pages":"xiii-xiv"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143019616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-10-29DOI: 10.1016/bs.acc.2024.10.004
Seunghwan Choi, Joon-Yong An
The advent of multiomics has ushered in a new era of cancer research characterized by integrated genomic, transcriptomic and proteomic analysis to unravel the complexities of cancer biology and facilitate the discovery of novel biomarkers. This chapter provides a comprehensive overview of the concept of multiomics, detailing the significant advances in the underlying technologies and their contributions to our understanding of cancer. It delves into the evolution of genomics and transcriptomics, breakthroughs in proteomics, and overarching progress in multiomic methodologies, highlighting their collective impact on cancer biomarker discovery. Furthermore, this chapter explores the computational methods essential for multiomic studies, including clustering techniques for delineating cancer subtypes, strategies for estimating molecular features and activities, and utility of pathway enrichment analyses for interpreting multiomic datasets. Particular focus has been placed on the application of these methods for identifying distinct cancer subtypes, thereby enabling a more personalized approach to cancer treatment. Through a detailed discussion of the scientific principles, technological advancements, and practical applications of multiomics, this chapter aims to underscore the pivotal role of multiomics in advancing cancer research and paving the way for personalized medicine. The insights provided herein not only illuminate the current landscape of cancer biomarker discovery, but also forecast future directions of multiomics research in oncology, advocating for a more integrated and nuanced approach to understanding and combating cancer.
{"title":"Multiomics in cancer biomarker discovery and cancer subtyping.","authors":"Seunghwan Choi, Joon-Yong An","doi":"10.1016/bs.acc.2024.10.004","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.10.004","url":null,"abstract":"<p><p>The advent of multiomics has ushered in a new era of cancer research characterized by integrated genomic, transcriptomic and proteomic analysis to unravel the complexities of cancer biology and facilitate the discovery of novel biomarkers. This chapter provides a comprehensive overview of the concept of multiomics, detailing the significant advances in the underlying technologies and their contributions to our understanding of cancer. It delves into the evolution of genomics and transcriptomics, breakthroughs in proteomics, and overarching progress in multiomic methodologies, highlighting their collective impact on cancer biomarker discovery. Furthermore, this chapter explores the computational methods essential for multiomic studies, including clustering techniques for delineating cancer subtypes, strategies for estimating molecular features and activities, and utility of pathway enrichment analyses for interpreting multiomic datasets. Particular focus has been placed on the application of these methods for identifying distinct cancer subtypes, thereby enabling a more personalized approach to cancer treatment. Through a detailed discussion of the scientific principles, technological advancements, and practical applications of multiomics, this chapter aims to underscore the pivotal role of multiomics in advancing cancer research and paving the way for personalized medicine. The insights provided herein not only illuminate the current landscape of cancer biomarker discovery, but also forecast future directions of multiomics research in oncology, advocating for a more integrated and nuanced approach to understanding and combating cancer.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"124 ","pages":"161-195"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143019600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-22DOI: 10.1016/bs.acc.2024.11.002
Caio Ribeiro Vieira Leal, Heloisa Botezelli, Júlia Fernandes do Carmo Las Casas, Ana Cristina Simões E Silva, Fernando M Reis
Preeclampsia (PE), a pregnancy-related syndrome, has motivated extensive research to understand its pathophysiology and develop early diagnostic methods. 'Omic' technologies, focusing on genes, mRNA, proteins, and metabolites, have revolutionized biological system studies. Urine emerges as an ideal non-invasive specimen for omics analysis, offering accessibility, easy collection, and stability, making it valuable for identifying biomarkers. A comprehensive exploration of urinary omics in preeclampsia is discussed in this review. Proteomic studies identified biomarkers such as SERPINA-1 and uromodulin, showing promise for early diagnosis and severity assessment. Metabolomic analyses revealed alterations in metabolites like glycine and hippurate, providing insights into molecular mechanisms underlying PE. Challenges include methodological inconsistencies and the need for standardized protocols. Urinary omics technologies have significantly advanced our understanding of PE pathophysiology and hold promise for improved diagnosis and management. Biomarkers identified through these approaches offer potential for early detection, severity stratification, and elucidation of underlying mechanisms.
{"title":"Urinary biomarkers of preeclampsia: An update.","authors":"Caio Ribeiro Vieira Leal, Heloisa Botezelli, Júlia Fernandes do Carmo Las Casas, Ana Cristina Simões E Silva, Fernando M Reis","doi":"10.1016/bs.acc.2024.11.002","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.11.002","url":null,"abstract":"<p><p>Preeclampsia (PE), a pregnancy-related syndrome, has motivated extensive research to understand its pathophysiology and develop early diagnostic methods. 'Omic' technologies, focusing on genes, mRNA, proteins, and metabolites, have revolutionized biological system studies. Urine emerges as an ideal non-invasive specimen for omics analysis, offering accessibility, easy collection, and stability, making it valuable for identifying biomarkers. A comprehensive exploration of urinary omics in preeclampsia is discussed in this review. Proteomic studies identified biomarkers such as SERPINA-1 and uromodulin, showing promise for early diagnosis and severity assessment. Metabolomic analyses revealed alterations in metabolites like glycine and hippurate, providing insights into molecular mechanisms underlying PE. Challenges include methodological inconsistencies and the need for standardized protocols. Urinary omics technologies have significantly advanced our understanding of PE pathophysiology and hold promise for improved diagnosis and management. Biomarkers identified through these approaches offer potential for early detection, severity stratification, and elucidation of underlying mechanisms.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"124 ","pages":"197-211"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143019638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-06-21DOI: 10.1016/bs.acc.2024.06.003
Hector Katifelis, Maria Gazouli
Cancer therapy is a rapidly evolving and constantly expanding field. Current approaches include surgery, conventional chemotherapy and novel biologic agents as in immunotherapy, that together compose a wide armamentarium. The plethora of choices can, however, be clinically challenging in prescribing the most suitable treatment for any given patient. Fortunately, biomarkers can greatly facilitate the most appropriate selection. In recent years, RNA-based biomarkers have proven most promising. These molecules that range from small noncoding RNAs to protein coding gene transcripts can be valuable in cancer management and especially in cancer therapeutics. Compared to their DNA counterparts which are stable throughout treatment, RNA-biomarkers are dynamic. This allows prediction of success prior to treatment start and can identify alterations in expression that could reflect response. Moreover, improved nucleic acid technology allows RNA to be extracted from practically every biofluid/matrix and evaluated with exceedingly high analytic sensitivity. In addition, samples are largely obtained by minimally invasive procedures and as such can be used serially to assess treatment response real-time. This chapter provides the reader insight on currently known RNA biomarkers, the latest research employing Artificial Intelligence in the identification of such molecules and in clinical decisions driving forward the era of personalized oncology.
{"title":"RNA biomarkers in cancer therapeutics: The promise of personalized oncology.","authors":"Hector Katifelis, Maria Gazouli","doi":"10.1016/bs.acc.2024.06.003","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.06.003","url":null,"abstract":"<p><p>Cancer therapy is a rapidly evolving and constantly expanding field. Current approaches include surgery, conventional chemotherapy and novel biologic agents as in immunotherapy, that together compose a wide armamentarium. The plethora of choices can, however, be clinically challenging in prescribing the most suitable treatment for any given patient. Fortunately, biomarkers can greatly facilitate the most appropriate selection. In recent years, RNA-based biomarkers have proven most promising. These molecules that range from small noncoding RNAs to protein coding gene transcripts can be valuable in cancer management and especially in cancer therapeutics. Compared to their DNA counterparts which are stable throughout treatment, RNA-biomarkers are dynamic. This allows prediction of success prior to treatment start and can identify alterations in expression that could reflect response. Moreover, improved nucleic acid technology allows RNA to be extracted from practically every biofluid/matrix and evaluated with exceedingly high analytic sensitivity. In addition, samples are largely obtained by minimally invasive procedures and as such can be used serially to assess treatment response real-time. This chapter provides the reader insight on currently known RNA biomarkers, the latest research employing Artificial Intelligence in the identification of such molecules and in clinical decisions driving forward the era of personalized oncology.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"123 ","pages":"179-219"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/S0065-2423(24)00077-5
Gregory S Makowski
{"title":"Preface.","authors":"Gregory S Makowski","doi":"10.1016/S0065-2423(24)00077-5","DOIUrl":"https://doi.org/10.1016/S0065-2423(24)00077-5","url":null,"abstract":"","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"120 ","pages":"xi-xii"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-05-15DOI: 10.1016/bs.acc.2024.04.006
Monika Dawid, Karolina Pich, Ewa Mlyczyńska, Natalia Respekta-Długosz, Dominka Wachowska, Aleksandra Greggio, Oliwia Szkraba, Patrycja Kurowska, Agnieszka Rak
Reproductive success consists of a sequential events chronology, starting with the ovum fertilization, implantation of the embryo, placentation, and cellular processes like proliferation, apoptosis, angiogenesis, endocrinology, or metabolic changes, which taken together finally conduct the birth of healthy offspring. Currently, many factors are known that affect the regulation and proper maintenance of pregnancy in humans, domestic animals, or rodents. Among the determinants of reproductive success should be distinguished: the maternal microenvironment, genes, and proteins as well as numerous pregnancy hormones that regulate the most important processes and ensure organism homeostasis. It is well known that white adipose tissue, as the largest endocrine gland in our body, participates in the synthesis and secretion of numerous hormones belonging to the adipokine family, which also may regulate the course of pregnancy. Unfortunately, overweight and obesity lead to the expansion of adipose tissue in the body, and its excess in both women and animals contributes to changes in the synthesis and release of adipokines, which in turn translates into dramatic changes during pregnancy, including those taking place in the organ that is crucial for the proper progress of pregnancy, i.e. the placenta. In this chapter, we are summarizing the current knowledge about levels of adipokines and their role in the placenta, taking into account the physiological and pathological conditions of pregnancy, e.g. gestational diabetes mellitus, preeclampsia, or intrauterine growth restriction in humans, domestic animals, and rodents.
{"title":"Adipokines in pregnancy.","authors":"Monika Dawid, Karolina Pich, Ewa Mlyczyńska, Natalia Respekta-Długosz, Dominka Wachowska, Aleksandra Greggio, Oliwia Szkraba, Patrycja Kurowska, Agnieszka Rak","doi":"10.1016/bs.acc.2024.04.006","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.04.006","url":null,"abstract":"<p><p>Reproductive success consists of a sequential events chronology, starting with the ovum fertilization, implantation of the embryo, placentation, and cellular processes like proliferation, apoptosis, angiogenesis, endocrinology, or metabolic changes, which taken together finally conduct the birth of healthy offspring. Currently, many factors are known that affect the regulation and proper maintenance of pregnancy in humans, domestic animals, or rodents. Among the determinants of reproductive success should be distinguished: the maternal microenvironment, genes, and proteins as well as numerous pregnancy hormones that regulate the most important processes and ensure organism homeostasis. It is well known that white adipose tissue, as the largest endocrine gland in our body, participates in the synthesis and secretion of numerous hormones belonging to the adipokine family, which also may regulate the course of pregnancy. Unfortunately, overweight and obesity lead to the expansion of adipose tissue in the body, and its excess in both women and animals contributes to changes in the synthesis and release of adipokines, which in turn translates into dramatic changes during pregnancy, including those taking place in the organ that is crucial for the proper progress of pregnancy, i.e. the placenta. In this chapter, we are summarizing the current knowledge about levels of adipokines and their role in the placenta, taking into account the physiological and pathological conditions of pregnancy, e.g. gestational diabetes mellitus, preeclampsia, or intrauterine growth restriction in humans, domestic animals, and rodents.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"121 ","pages":"172-269"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141154070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}