Pub Date : 2025-01-01Epub Date: 2024-11-01DOI: 10.1016/bs.acc.2024.10.003
Kyle E Lira, Jody C May, John A McLean
Advancements in clinical chemistry have major implications in terms of public health, prompting many clinicians to seek out chemical information to aid in diagnoses and treatments. While mass spectrometry (MS) and hyphenated-MS techniques such as LC-MS or tandem MS/MS have long been the analytical methods of choice for many clinical applications, these methods routinely demonstrate difficulty in differentiating between isomeric forms in complex matrices. Consequently, ion mobility spectrometry (IM), which differentiates molecules on the basis of size, shape, and charge, has demonstrated unique advantages in the broad application of stand-alone IM and hyphenated IM instruments towards clinical challenges. Here, we highlight representative IM applications and approaches and describe contemporary commercial offerings of IM technology and how these can be, or are currently being, applied to the field of clinical chemistry.
{"title":"Ion mobility spectrometry and ion mobility-mass spectrometry in clinical chemistry.","authors":"Kyle E Lira, Jody C May, John A McLean","doi":"10.1016/bs.acc.2024.10.003","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.10.003","url":null,"abstract":"<p><p>Advancements in clinical chemistry have major implications in terms of public health, prompting many clinicians to seek out chemical information to aid in diagnoses and treatments. While mass spectrometry (MS) and hyphenated-MS techniques such as LC-MS or tandem MS/MS have long been the analytical methods of choice for many clinical applications, these methods routinely demonstrate difficulty in differentiating between isomeric forms in complex matrices. Consequently, ion mobility spectrometry (IM), which differentiates molecules on the basis of size, shape, and charge, has demonstrated unique advantages in the broad application of stand-alone IM and hyphenated IM instruments towards clinical challenges. Here, we highlight representative IM applications and approaches and describe contemporary commercial offerings of IM technology and how these can be, or are currently being, applied to the field of clinical chemistry.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"124 ","pages":"123-160"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143019596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/S0065-2423(25)00025-3
Gregory S Makowski
{"title":"Preface.","authors":"Gregory S Makowski","doi":"10.1016/S0065-2423(25)00025-3","DOIUrl":"https://doi.org/10.1016/S0065-2423(25)00025-3","url":null,"abstract":"","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"125 ","pages":"xi-xii"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143485330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-07DOI: 10.1016/bs.acc.2024.10.002
Chrisanna Dobrowolski, Shu Min Lao, Fadi Kharouf, Paula Parnizari Croci, Joan Wither, Dafna D Gladman, Laura Whitall Garcia, Arenn Jauhal, Zahi Touma
Lupus nephritis (LN) or renal involvement of systemic lupus erythematosus (SLE), is a common manifestation occurring in at least 50 % of SLE patients. LN remains a significant source of morbidity, often leading to progressive renal dysfunction and is a major cause of death in SLE. Despite these challenges, advances in the understanding of the pathogenesis and genetic underpinnings of LN have led to a commendable expansion in available treatments over the past decade. This chapter provides a foundation for the understanding LN pathogenesis, diagnosis, and epidemiology, and guides the reader through recent advances in biomarkers, genetic susceptibility of this intricate condition.
{"title":"Lupus nephritis: Biomarkers.","authors":"Chrisanna Dobrowolski, Shu Min Lao, Fadi Kharouf, Paula Parnizari Croci, Joan Wither, Dafna D Gladman, Laura Whitall Garcia, Arenn Jauhal, Zahi Touma","doi":"10.1016/bs.acc.2024.10.002","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.10.002","url":null,"abstract":"<p><p>Lupus nephritis (LN) or renal involvement of systemic lupus erythematosus (SLE), is a common manifestation occurring in at least 50 % of SLE patients. LN remains a significant source of morbidity, often leading to progressive renal dysfunction and is a major cause of death in SLE. Despite these challenges, advances in the understanding of the pathogenesis and genetic underpinnings of LN have led to a commendable expansion in available treatments over the past decade. This chapter provides a foundation for the understanding LN pathogenesis, diagnosis, and epidemiology, and guides the reader through recent advances in biomarkers, genetic susceptibility of this intricate condition.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"124 ","pages":"87-122"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143019599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-01-28DOI: 10.1016/bs.acc.2024.11.004
Nicola S Orefice, Gianluca Petrillo, Claudia Pignataro, Martina Mascolo, Giada De Luca, Sara Verde, Francesca Pentimalli, Gerolama Condorelli, Cristina Quintavalle
Extracellular vesicles (EVs) have emerged as critical mediators of intercellular communication in cancer. These membranous structures, secreted by normal and cancerous cells, carry a cargo of bioactive molecules including microRNAs (miRNAs) that modulate various cellular processes. miRNAs are small non-coding RNAs that play pivotal roles in post-transcriptional gene regulation and have been implicated in cancer initiation, progression, and metastasis. In cancer, tumor-derived EVs transport specific miRNAs to recipient cells, modulating tumorigenesis, growth, angiogenesis, and metastasis. Dysregulation of miRNA expression profiles within EVs contributes to the acquisition of cancer hallmarks that include increased proliferation, survival, and migration. EV miRNAs influence the tumor microenvironment, promoting immune evasion, remodeling the extracellular matrix, and establishing pre-metastatic niches. Understanding the complex interplay between EVs, miRNAs, and cancer holds significant promise for developing novel diagnostic and therapeutic strategies. This chapter provides insights into the role of EV-mediated miRNA signaling in cancer pathogenesis, highlighting its potential as a biomarker for cancer detection, prognosis, and treatment response assessment.
{"title":"Extracellular vesicles and microRNAs in cancer progression.","authors":"Nicola S Orefice, Gianluca Petrillo, Claudia Pignataro, Martina Mascolo, Giada De Luca, Sara Verde, Francesca Pentimalli, Gerolama Condorelli, Cristina Quintavalle","doi":"10.1016/bs.acc.2024.11.004","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.11.004","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) have emerged as critical mediators of intercellular communication in cancer. These membranous structures, secreted by normal and cancerous cells, carry a cargo of bioactive molecules including microRNAs (miRNAs) that modulate various cellular processes. miRNAs are small non-coding RNAs that play pivotal roles in post-transcriptional gene regulation and have been implicated in cancer initiation, progression, and metastasis. In cancer, tumor-derived EVs transport specific miRNAs to recipient cells, modulating tumorigenesis, growth, angiogenesis, and metastasis. Dysregulation of miRNA expression profiles within EVs contributes to the acquisition of cancer hallmarks that include increased proliferation, survival, and migration. EV miRNAs influence the tumor microenvironment, promoting immune evasion, remodeling the extracellular matrix, and establishing pre-metastatic niches. Understanding the complex interplay between EVs, miRNAs, and cancer holds significant promise for developing novel diagnostic and therapeutic strategies. This chapter provides insights into the role of EV-mediated miRNA signaling in cancer pathogenesis, highlighting its potential as a biomarker for cancer detection, prognosis, and treatment response assessment.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"125 ","pages":"23-54"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143485325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-12-17DOI: 10.1016/bs.acc.2024.11.003
Kent Marshall, Yaw Twum, Yulu Li, Weimin Gao
Two-dimensional difference gel electrophoresis (2D-DIGE) has been a staple of protein studies for almost three decades since first described in 1997. Although the advent of omic technologies has greatly expanded protein research and discovery, 2D-DIGE has consistently been the mainstay in biomedical applications. Differential protein expression is a hallmark of many disease states and identification of these biomarkers can improve diagnosis, prognosis and treatment. In this review, we examine the use of 2D-DIGE in exploring the cellular environment in physiologic and pathophysiologic states. We highlight this technology in protein identification and quantification, functional modification and biochemical pathways of interest. 2D-DIGE remains a useful tool due low cost and high resolving power for comparative and quantitative purposes in assessing disease states and facilitating identification of unique and novel biomarkers.
{"title":"Spotting targets with 2D-DIGE proteomics.","authors":"Kent Marshall, Yaw Twum, Yulu Li, Weimin Gao","doi":"10.1016/bs.acc.2024.11.003","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.11.003","url":null,"abstract":"<p><p>Two-dimensional difference gel electrophoresis (2D-DIGE) has been a staple of protein studies for almost three decades since first described in 1997. Although the advent of omic technologies has greatly expanded protein research and discovery, 2D-DIGE has consistently been the mainstay in biomedical applications. Differential protein expression is a hallmark of many disease states and identification of these biomarkers can improve diagnosis, prognosis and treatment. In this review, we examine the use of 2D-DIGE in exploring the cellular environment in physiologic and pathophysiologic states. We highlight this technology in protein identification and quantification, functional modification and biochemical pathways of interest. 2D-DIGE remains a useful tool due low cost and high resolving power for comparative and quantitative purposes in assessing disease states and facilitating identification of unique and novel biomarkers.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"125 ","pages":"1-22"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143485333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-12-10DOI: 10.1016/bs.acc.2024.11.005
Fardin Nabizadeh
White matter (WM), constituting nearly half of the human brain's mass, is pivotal for the rapid transmission of neural signals across different brain regions, significantly influencing cognitive processes like learning, memory, and problem-solving. The integrity of WM is essential for brain function, and its damage, which can occur due to conditions such as multiple sclerosis (MS), stroke, and traumatic brain injury, results in severe neurological deficits and cognitive decline. The primary objective of this book chapter is to discuss the clinical significance of fluid biomarkers in assessing WM damage within the central nervous system (CNS). It explores the biological underpinnings and pathological changes in WM due to various neurological conditions and details how alterations can be detected and quantified through fluid biomarkers. By examining biomarkers like Myelin Basic Protein (MBP), Neurofilament light chain (NFL), and others, the chapter highlights their role in enhancing diagnostic precision, monitoring disease progression, and guiding therapeutic interventions, thus providing crucial insights into maintaining WM integrity and preventing cognitive and physical disabilities.
{"title":"Brain white matter damage biomarkers.","authors":"Fardin Nabizadeh","doi":"10.1016/bs.acc.2024.11.005","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.11.005","url":null,"abstract":"<p><p>White matter (WM), constituting nearly half of the human brain's mass, is pivotal for the rapid transmission of neural signals across different brain regions, significantly influencing cognitive processes like learning, memory, and problem-solving. The integrity of WM is essential for brain function, and its damage, which can occur due to conditions such as multiple sclerosis (MS), stroke, and traumatic brain injury, results in severe neurological deficits and cognitive decline. The primary objective of this book chapter is to discuss the clinical significance of fluid biomarkers in assessing WM damage within the central nervous system (CNS). It explores the biological underpinnings and pathological changes in WM due to various neurological conditions and details how alterations can be detected and quantified through fluid biomarkers. By examining biomarkers like Myelin Basic Protein (MBP), Neurofilament light chain (NFL), and others, the chapter highlights their role in enhancing diagnostic precision, monitoring disease progression, and guiding therapeutic interventions, thus providing crucial insights into maintaining WM integrity and preventing cognitive and physical disabilities.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"125 ","pages":"55-91"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143485314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-01-07DOI: 10.1016/bs.acc.2024.11.001
Danielle M Luettel, Marcia R Terluk, Jaehyeok Roh, Neal J Weinreb, Reena V Kartha
Gaucher disease (GD) is a rare lysosomal disorder characterized by the accumulation of glycosphingolipids in macrophages resulting from glucocerebrosidase (GCase) deficiency. The accumulation of toxic substrates, which causes the hallmark symptoms of GD, is dependent on the extent of enzyme dysfunction. Accordingly, three distinct subtypes have been recognized, with type 1 GD (GD1) as the common and milder form, while types 2 (GD2) and 3 (GD3) are categorized as neuronopathic and severe. Manifestations variably include hepatosplenomegaly, anemia, thrombocytopenia, easy bruising, inflammation, bone pain and other skeletal pathologies, abnormal eye movements and neuropathy. Although the molecular basis of GD is relatively well understood, currently used biomarkers are nonspecific and inadequate for making finer distinctions between subtypes and in evaluating changes in disease status and guiding therapy. Thus, there is continued effort to investigate and identify potential biomarkers to improve GD diagnosis, monitoring and potential identification of novel therapeutic targets. Here, we provide a comprehensive review of emerging biomarkers in GD that can enhance current understanding and improve quality of life through better testing, disease management and treatment.
{"title":"Emerging biomarkers in Gaucher disease.","authors":"Danielle M Luettel, Marcia R Terluk, Jaehyeok Roh, Neal J Weinreb, Reena V Kartha","doi":"10.1016/bs.acc.2024.11.001","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.11.001","url":null,"abstract":"<p><p>Gaucher disease (GD) is a rare lysosomal disorder characterized by the accumulation of glycosphingolipids in macrophages resulting from glucocerebrosidase (GCase) deficiency. The accumulation of toxic substrates, which causes the hallmark symptoms of GD, is dependent on the extent of enzyme dysfunction. Accordingly, three distinct subtypes have been recognized, with type 1 GD (GD1) as the common and milder form, while types 2 (GD2) and 3 (GD3) are categorized as neuronopathic and severe. Manifestations variably include hepatosplenomegaly, anemia, thrombocytopenia, easy bruising, inflammation, bone pain and other skeletal pathologies, abnormal eye movements and neuropathy. Although the molecular basis of GD is relatively well understood, currently used biomarkers are nonspecific and inadequate for making finer distinctions between subtypes and in evaluating changes in disease status and guiding therapy. Thus, there is continued effort to investigate and identify potential biomarkers to improve GD diagnosis, monitoring and potential identification of novel therapeutic targets. Here, we provide a comprehensive review of emerging biomarkers in GD that can enhance current understanding and improve quality of life through better testing, disease management and treatment.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"124 ","pages":"1-56"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143019594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Visceral adipose tissue, a type of abdominal adipose tissue, is highly involved in lipolysis. Because increased visceral adiposity is strongly associated with the metabolic complications related with obesity, such as type 2 diabetes and cardiovascular disease, there is a need for precise, targeted, personalized and site-specific measures clinically. Existing studies showed that ectopic fat accumulation may be characterized differently among different populations due to complex genetic architecture and non-genetic or epigenetic components, ie, Asians have more and Africans have less visceral fat vs Europeans. In this review, we summarize the effects of multiple non-genetic and genetic factors on visceral fat distribution across races. Non-genetic factors include diet, socioeconomic status, sex hormones and psychological factors, etc. We examine genetic factors of racial differences in visceral fat content as well as possible regulatory pathways associated with interracial visceral fat distribution. A comprehensive understanding of both genetic and non-genetic factors that influence the distribution of visceral fat among races, leads us to predict risk of abdominal obesity and metabolic diseases in ethnic groups that enables targeted interventions through accurate diagnosis and treatment as well as reduced risk of obesity-associated complications.
{"title":"Visceral fat distribution: Interracial studies.","authors":"Santasree Banerjee, Jiayin Lv, Chang He, Baiyu Qi, Weijie Ding, Kongrong Long, Junrong Chen, Jianping Wen, Peng Chen","doi":"10.1016/bs.acc.2024.10.001","DOIUrl":"10.1016/bs.acc.2024.10.001","url":null,"abstract":"<p><p>Visceral adipose tissue, a type of abdominal adipose tissue, is highly involved in lipolysis. Because increased visceral adiposity is strongly associated with the metabolic complications related with obesity, such as type 2 diabetes and cardiovascular disease, there is a need for precise, targeted, personalized and site-specific measures clinically. Existing studies showed that ectopic fat accumulation may be characterized differently among different populations due to complex genetic architecture and non-genetic or epigenetic components, ie, Asians have more and Africans have less visceral fat vs Europeans. In this review, we summarize the effects of multiple non-genetic and genetic factors on visceral fat distribution across races. Non-genetic factors include diet, socioeconomic status, sex hormones and psychological factors, etc. We examine genetic factors of racial differences in visceral fat content as well as possible regulatory pathways associated with interracial visceral fat distribution. A comprehensive understanding of both genetic and non-genetic factors that influence the distribution of visceral fat among races, leads us to predict risk of abdominal obesity and metabolic diseases in ethnic groups that enables targeted interventions through accurate diagnosis and treatment as well as reduced risk of obesity-associated complications.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"124 ","pages":"57-85"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143018622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-12-14DOI: 10.1016/bs.acc.2024.11.006
Aparajita Das, Sarbani Giri, Pubali Dey
A hallmark change during carcinogenesis is disruption or dysregulation of cell-cell junctions. It enables a transformed cell to adopt mesenchymal phenotype and acquire higher potential to migrate and invade. This ultimately leads to cancer metastasis. During this process, junctional proteins undergo remarkable changes in terms of their expressional pattern, localization, and activity. De-localized junctional proteins may adopt atypical roles which might act to either suppress tumorigenesis or facilitate cancer development, depending on several factors. In this chapter, the authors attempt to know the expression pattern of junctional proteins in different types of cancer, understand its significance, and gather knowledge about the mechanisms by which they regulate tumorigenesis and cancer development.
{"title":"Cell-cell junctional proteins in cancer.","authors":"Aparajita Das, Sarbani Giri, Pubali Dey","doi":"10.1016/bs.acc.2024.11.006","DOIUrl":"https://doi.org/10.1016/bs.acc.2024.11.006","url":null,"abstract":"<p><p>A hallmark change during carcinogenesis is disruption or dysregulation of cell-cell junctions. It enables a transformed cell to adopt mesenchymal phenotype and acquire higher potential to migrate and invade. This ultimately leads to cancer metastasis. During this process, junctional proteins undergo remarkable changes in terms of their expressional pattern, localization, and activity. De-localized junctional proteins may adopt atypical roles which might act to either suppress tumorigenesis or facilitate cancer development, depending on several factors. In this chapter, the authors attempt to know the expression pattern of junctional proteins in different types of cancer, understand its significance, and gather knowledge about the mechanisms by which they regulate tumorigenesis and cancer development.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"125 ","pages":"93-142"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143485323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/S0065-2423(25)00008-3
Gregory S Makowski
{"title":"Preface.","authors":"Gregory S Makowski","doi":"10.1016/S0065-2423(25)00008-3","DOIUrl":"https://doi.org/10.1016/S0065-2423(25)00008-3","url":null,"abstract":"","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"124 ","pages":"xiii-xiv"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143019616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}