Corrosion-induced changes in bio-oil aging: A gas chromatography exploration

IF 9 1区 工程技术 Q1 ENERGY & FUELS Renewable Energy Pub Date : 2024-08-14 DOI:10.1016/j.renene.2024.121193
{"title":"Corrosion-induced changes in bio-oil aging: A gas chromatography exploration","authors":"","doi":"10.1016/j.renene.2024.121193","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the interactions between metals, corrosion products, and bio-oil (BO) is crucial for safe and efficient BO operations. This study explored BO aging and BO + steel (carbon steel (CS) and stainless steel (SS)) immersion at 80 °C for 168 h, alongside experiments adding synthetic Fe<sub>2</sub>O<sub>3</sub> and Cr<sub>2</sub>O<sub>3</sub> powders to BO. Gas generated was analyzed via gas chromatography (GC). Results showed 80 °C was an optimal pre-heating temperature for BO without gas evolution. BO aging at up to 220 °C for 24 h increased CO<sub>2</sub> and CO evolutions. CS immersion at 80 °C produced more H<sub>2</sub> and CO<sub>2</sub> than those at 50 °C, due to higher corrosion rates. The BO + Fe<sub>2</sub>O<sub>3</sub> trial released less H<sub>2</sub> but more CO<sub>2</sub> compared to BO + CS immersion, due to internal BO reactions catalyzed by Fe<sub>2</sub>O<sub>3</sub>. BO + SS304L and BO + Cr<sub>2</sub>O<sub>3</sub> trials showed similar H<sub>2</sub> and CO<sub>2</sub> production, highlighting the catalytic effect of Cr<sub>2</sub>O<sub>3</sub>. Leached Fe ions in BO formed chelate complexes with organic compounds, causing phase separation. These findings have significant implications for producing renewable biofuels via BO co-processing operations by emphasizing the need to optimize preheating temperatures, validate the compatibility of construction materials, and implement safety measures to mitigate gas accumulation risks.</p></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0960148124012618/pdfft?md5=bd4df7b23c8e495ff643ee1d895c8685&pid=1-s2.0-S0960148124012618-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148124012618","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the interactions between metals, corrosion products, and bio-oil (BO) is crucial for safe and efficient BO operations. This study explored BO aging and BO + steel (carbon steel (CS) and stainless steel (SS)) immersion at 80 °C for 168 h, alongside experiments adding synthetic Fe2O3 and Cr2O3 powders to BO. Gas generated was analyzed via gas chromatography (GC). Results showed 80 °C was an optimal pre-heating temperature for BO without gas evolution. BO aging at up to 220 °C for 24 h increased CO2 and CO evolutions. CS immersion at 80 °C produced more H2 and CO2 than those at 50 °C, due to higher corrosion rates. The BO + Fe2O3 trial released less H2 but more CO2 compared to BO + CS immersion, due to internal BO reactions catalyzed by Fe2O3. BO + SS304L and BO + Cr2O3 trials showed similar H2 and CO2 production, highlighting the catalytic effect of Cr2O3. Leached Fe ions in BO formed chelate complexes with organic compounds, causing phase separation. These findings have significant implications for producing renewable biofuels via BO co-processing operations by emphasizing the need to optimize preheating temperatures, validate the compatibility of construction materials, and implement safety measures to mitigate gas accumulation risks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
腐蚀引起的生物油老化变化:气相色谱法探索
了解金属、腐蚀产物和生物油(BO)之间的相互作用对于安全高效地运行生物油至关重要。本研究探讨了生物油老化和生物油 + 钢(碳钢 (CS) 和不锈钢 (SS))在 80 °C 下浸泡 168 小时,以及向生物油中添加合成 Fe2O3 和 Cr2O3 粉末的实验。产生的气体通过气相色谱法(GC)进行分析。结果表明,80 °C是BO不产生气体的最佳预热温度。BO 在 220 °C 下老化 24 小时会增加 CO2 和 CO 的挥发。由于腐蚀速率较高,在 80 °C 下浸泡希尔思比在 50 °C 下浸泡希尔思产生更多的 H2 和 CO2。与 BO + CS 浸泡相比,BO + Fe2O3 试验释放的 H2 更少,但 CO2 更多,这是由于 Fe2O3 催化了 BO 的内部反应。BO + SS304L 和 BO + Cr2O3 试验显示出相似的 H2 和 CO2 生成量,突出了 Cr2O3 的催化作用。BO 中浸出的铁离子与有机化合物形成螯合物,导致相分离。这些发现强调了优化预热温度、验证建筑材料兼容性和实施安全措施以降低气体积累风险的必要性,从而对通过 BO 共处理操作生产可再生生物燃料具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
期刊最新文献
Relationships between remarkable points in photovoltaic I–V curves Surface interaction changes in minerals for underground hydrogen storage: Effects of CO2 cushion gas Experimental analysis of a PEMFC-based CCP system integrated with adsorption chiller Intelligent hydrogen-ammonia combined energy storage system with deep reinforcement learning Lignin oxidation reaction kinetics and its conversion into high-value chemicals over self-prepared electrode during lignin-assisted water electrolysis for hydrogen production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1