Upgrading properties and circularity of the recycled flexible polypropylene by developing composites with an optimal combination of a fumed silica and maleated polypropylene copolymer: Influence of the addition of copolymer, type of fumed silica and the silica/copolymer ratio on packaging properties
Eliezer Velásquez , Carol López-de-Dicastillo , Cristian Patiño Vidal , Guillermo Copello , C.J. Pérez , Abel Guarda , María José Galotto
{"title":"Upgrading properties and circularity of the recycled flexible polypropylene by developing composites with an optimal combination of a fumed silica and maleated polypropylene copolymer: Influence of the addition of copolymer, type of fumed silica and the silica/copolymer ratio on packaging properties","authors":"Eliezer Velásquez , Carol López-de-Dicastillo , Cristian Patiño Vidal , Guillermo Copello , C.J. Pérez , Abel Guarda , María José Galotto","doi":"10.1016/j.polymertesting.2024.108556","DOIUrl":null,"url":null,"abstract":"<div><p>Rigid polypropylene is mechanically recycled but flexible polypropylene is mostly used in energetic valorization because of the poor properties of the recycled polymer. A recycled polypropylene-based composite with outstanding properties for flexible food packaging was developed. For the first time, the influence of maleated polypropylene copolymer addition and the fumed silica/copolymer ratio on the packaging properties of recycled flexible polypropylene under the effects of silica hydrophilicity was investigated. The structural, morphological, thermal, mechanical, melt flow, overall migration, water vapor barrier and sealing properties of the developed nanocomposites were analyzed. Prominently, the addition of 1:1 maleated polypropylene and hydrophobic nanosilica improved the global performance of all tested methods. The recycled polypropylene had an overall migration to olive oil of 17 mg dm<sup>−2</sup>, exceeding the limit allowed for food packaging, but the developed added-value composite reduced it to the tolerance limit according EU legislation. The seal strength was drastically increased by 50 % with adhesive peeling, high thermal stability, and well-dispersed particles without affecting the ductility.</p></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"138 ","pages":"Article 108556"},"PeriodicalIF":5.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0142941824002332/pdfft?md5=dbfdcae2c059dbbdf93ddf8c48193b26&pid=1-s2.0-S0142941824002332-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941824002332","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Rigid polypropylene is mechanically recycled but flexible polypropylene is mostly used in energetic valorization because of the poor properties of the recycled polymer. A recycled polypropylene-based composite with outstanding properties for flexible food packaging was developed. For the first time, the influence of maleated polypropylene copolymer addition and the fumed silica/copolymer ratio on the packaging properties of recycled flexible polypropylene under the effects of silica hydrophilicity was investigated. The structural, morphological, thermal, mechanical, melt flow, overall migration, water vapor barrier and sealing properties of the developed nanocomposites were analyzed. Prominently, the addition of 1:1 maleated polypropylene and hydrophobic nanosilica improved the global performance of all tested methods. The recycled polypropylene had an overall migration to olive oil of 17 mg dm−2, exceeding the limit allowed for food packaging, but the developed added-value composite reduced it to the tolerance limit according EU legislation. The seal strength was drastically increased by 50 % with adhesive peeling, high thermal stability, and well-dispersed particles without affecting the ductility.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.