Penalized composite likelihood estimation for hidden Markov models with unknown number of states

Pub Date : 2024-08-17 DOI:10.1016/j.spl.2024.110247
Yong Lin, Mian Huang
{"title":"Penalized composite likelihood estimation for hidden Markov models with unknown number of states","authors":"Yong Lin,&nbsp;Mian Huang","doi":"10.1016/j.spl.2024.110247","DOIUrl":null,"url":null,"abstract":"<div><p>Estimating hidden Markov models (HMMs) with unknown number of states is a challenging task. In this paper, we propose a new penalized composite likelihood approach for simultaneously estimating both the number of states and the parameters in an overfitted HMM. We prove the order selection consistency and asymptotic normality of the resultant estimator. Simulation studies and an application demonstrate the finite sample performance of the proposed method.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167715224002165/pdfft?md5=0843d91f3a99915f9b2c9cdc001b0b90&pid=1-s2.0-S0167715224002165-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224002165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Estimating hidden Markov models (HMMs) with unknown number of states is a challenging task. In this paper, we propose a new penalized composite likelihood approach for simultaneously estimating both the number of states and the parameters in an overfitted HMM. We prove the order selection consistency and asymptotic normality of the resultant estimator. Simulation studies and an application demonstrate the finite sample performance of the proposed method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
具有未知状态数的隐马尔可夫模型的惩罚性复合似然估计
估计具有未知状态数的隐马尔可夫模型(HMM)是一项具有挑战性的任务。在本文中,我们提出了一种新的惩罚性复合似然法,用于同时估计过拟合 HMM 的状态数和参数。我们证明了结果估计器的阶次选择一致性和渐近正态性。模拟研究和应用证明了所提方法的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1