{"title":"Synergistic strengthening mechanism of bio-helical unidirectional-basalt/weave-carbon fiber hybrid composite laminates subjected to quasi-static penetration","authors":"","doi":"10.1016/j.ast.2024.109475","DOIUrl":null,"url":null,"abstract":"<div><p>Both bio-helical toughening and fiber hybridization provide significant strengthening effects on the penetration properties of composite, and their combination may lead to even greater breakthroughs. Hence, this study explores the synergistic strengthening mechanism of bio-helical unidirectional-basalt fiber composite (BFRP) and weave-carbon fiber composite (CFRP) hybrid composite laminates (HFRP) subjected to penetration load. Three kinds of HFRP are designed and fabricated, and the quasi-static penetration tests and finite element simulations are conducted to evaluate the mechanical properties. Results show that the bio-helical HFRP samples present a significant improvement in anti-penetration property and energy-absorption as compared to other traditional samples. The penetration behaviors of each laminate present a good consistency between experiment and simulation. It is indicated that as the helical angle θ increases, the strengthening effect gradually increases, but when θ continues to increase, it tends to be stable. The penetration failure mechanism and energy-absorbing mechanism are analyzed by experiment and simulation. Finally, it is revealed that bio-helical toughening with hybrid effect from weave-CFRP can form a synergistic strengthening mechanism. This study provides an important reference for the anti-penetration design of aerospace composite with multi-mechanism cooperation.</p></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824006060","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Both bio-helical toughening and fiber hybridization provide significant strengthening effects on the penetration properties of composite, and their combination may lead to even greater breakthroughs. Hence, this study explores the synergistic strengthening mechanism of bio-helical unidirectional-basalt fiber composite (BFRP) and weave-carbon fiber composite (CFRP) hybrid composite laminates (HFRP) subjected to penetration load. Three kinds of HFRP are designed and fabricated, and the quasi-static penetration tests and finite element simulations are conducted to evaluate the mechanical properties. Results show that the bio-helical HFRP samples present a significant improvement in anti-penetration property and energy-absorption as compared to other traditional samples. The penetration behaviors of each laminate present a good consistency between experiment and simulation. It is indicated that as the helical angle θ increases, the strengthening effect gradually increases, but when θ continues to increase, it tends to be stable. The penetration failure mechanism and energy-absorbing mechanism are analyzed by experiment and simulation. Finally, it is revealed that bio-helical toughening with hybrid effect from weave-CFRP can form a synergistic strengthening mechanism. This study provides an important reference for the anti-penetration design of aerospace composite with multi-mechanism cooperation.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.