{"title":"Bayesian quadrature policy optimization for spacecraft proximity maneuvers and docking","authors":"","doi":"10.1016/j.ast.2024.109474","DOIUrl":null,"url":null,"abstract":"<div><p>Advancing autonomous spacecraft proximity maneuvers and docking (PMD) is crucial for enhancing the efficiency and safety of inter-satellite services. One primary challenge in PMD is the accurate <em>a priori</em> definition of the system model, often complicated by inherent uncertainties in the system modeling and observational data. To address this challenge, we propose a novel Lyapunov Bayesian actor-critic reinforcement learning algorithm that guarantees the stability of the control policy under uncertainty. The PMD task is formulated as a Markov decision process that involves the relative dynamic model, the docking cone, and the cost function. By applying Lyapunov theory, we reformulate temporal difference learning as a constrained Gaussian process regression, enabling the state-value function to act as a Lyapunov function. Additionally, the proposed Bayesian quadrature policy optimization method analytically computes policy gradients, effectively addressing stability constraints while accommodating informational uncertainties in the PMD task. Experimental validation on a spacecraft air-bearing testbed demonstrates the significant and promising performance of the proposed algorithm.</p></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824006059","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Advancing autonomous spacecraft proximity maneuvers and docking (PMD) is crucial for enhancing the efficiency and safety of inter-satellite services. One primary challenge in PMD is the accurate a priori definition of the system model, often complicated by inherent uncertainties in the system modeling and observational data. To address this challenge, we propose a novel Lyapunov Bayesian actor-critic reinforcement learning algorithm that guarantees the stability of the control policy under uncertainty. The PMD task is formulated as a Markov decision process that involves the relative dynamic model, the docking cone, and the cost function. By applying Lyapunov theory, we reformulate temporal difference learning as a constrained Gaussian process regression, enabling the state-value function to act as a Lyapunov function. Additionally, the proposed Bayesian quadrature policy optimization method analytically computes policy gradients, effectively addressing stability constraints while accommodating informational uncertainties in the PMD task. Experimental validation on a spacecraft air-bearing testbed demonstrates the significant and promising performance of the proposed algorithm.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.