The Salmonella Effector SspH2 Facilitates Spatially Selective Ubiquitination of NOD1 to Enhance Inflammatory Signaling.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry Biochemistry Pub Date : 2024-09-17 Epub Date: 2024-08-27 DOI:10.1021/acs.biochem.4c00380
Cole J Delyea, Malcolm D Forster, Shu Luo, Bradley E Dubrule, Olivier Julien, Amit P Bhavsar
{"title":"The <i>Salmonella</i> Effector SspH2 Facilitates Spatially Selective Ubiquitination of NOD1 to Enhance Inflammatory Signaling.","authors":"Cole J Delyea, Malcolm D Forster, Shu Luo, Bradley E Dubrule, Olivier Julien, Amit P Bhavsar","doi":"10.1021/acs.biochem.4c00380","DOIUrl":null,"url":null,"abstract":"<p><p>As part of its pathogenesis, <i>Salmonella enterica</i> serovar Typhimurium delivers effector proteins into host cells. One effector is SspH2, a member of the so-called novel E3 ubiquitin ligase family, that interacts with and enhances, NOD1 pro-inflammatory signaling, though the underlying mechanisms are unclear. Here, we report that SspH2 interacts with multiple members of the NLRC family to enhance pro-inflammatory signaling by targeted ubiquitination. We show that SspH2 modulates host innate immunity by interacting with both NOD1 and NOD2 in mammalian epithelial cell culture via the NF-κB pathway. Moreover, purified SspH2 and NOD1 directly interact, where NOD1 potentiates SspH2 E3 ubiquitin ligase activity. Mass spectrometry and mutational analyses identified four key lysine residues in NOD1 that are required for its enhanced activation by SspH2, but not its basal activity. These critical lysine residues are positioned in the same region of NOD1 and define a surface on the receptor that appears to be targeted by SspH2. Overall, this work provides evidence for post-translational modification of NOD1 by ubiquitin and uncovers a unique mechanism of spatially selective ubiquitination to enhance the activation of an archetypal NLR.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412229/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00380","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

As part of its pathogenesis, Salmonella enterica serovar Typhimurium delivers effector proteins into host cells. One effector is SspH2, a member of the so-called novel E3 ubiquitin ligase family, that interacts with and enhances, NOD1 pro-inflammatory signaling, though the underlying mechanisms are unclear. Here, we report that SspH2 interacts with multiple members of the NLRC family to enhance pro-inflammatory signaling by targeted ubiquitination. We show that SspH2 modulates host innate immunity by interacting with both NOD1 and NOD2 in mammalian epithelial cell culture via the NF-κB pathway. Moreover, purified SspH2 and NOD1 directly interact, where NOD1 potentiates SspH2 E3 ubiquitin ligase activity. Mass spectrometry and mutational analyses identified four key lysine residues in NOD1 that are required for its enhanced activation by SspH2, but not its basal activity. These critical lysine residues are positioned in the same region of NOD1 and define a surface on the receptor that appears to be targeted by SspH2. Overall, this work provides evidence for post-translational modification of NOD1 by ubiquitin and uncovers a unique mechanism of spatially selective ubiquitination to enhance the activation of an archetypal NLR.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
沙门氏菌效应因子 SspH2 促进了 NOD1 的空间选择性泛素化,从而增强了炎症信号传导。
作为其致病机制的一部分,伤寒沙门氏菌肠炎血清将效应蛋白传递到宿主细胞中。其中一种效应蛋白是 SspH2,它是所谓的新型 E3 泛素连接酶家族的成员,能与 NOD1 相互作用并增强其促炎症信号传导,但其潜在机制尚不清楚。在这里,我们报告了 SspH2 与 NLRC 家族的多个成员相互作用,通过靶向泛素化增强促炎信号传导。我们发现,在哺乳动物上皮细胞培养中,SspH2 通过 NF-κB 通路与 NOD1 和 NOD2 相互作用,从而调节宿主的先天性免疫。此外,纯化的 SspH2 和 NOD1 直接相互作用,其中 NOD1 能增强 SspH2 E3 泛素连接酶的活性。质谱分析和突变分析确定了 NOD1 中的四个关键赖氨酸残基,它们是 SspH2 增强激活 NOD1 所必需的,但不是其基础活性所必需的。这些关键的赖氨酸残基位于 NOD1 的同一区域,并确定了受体表面似乎是 SspH2 的靶标。总之,这项工作提供了泛素对 NOD1 进行翻译后修饰的证据,并揭示了一种独特的空间选择性泛素化机制,以增强原型 NLR 的活化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
期刊最新文献
Cocrystallization of the Src-Family Kinase Hck with the ATP-Site Inhibitor A-419259 Stabilizes an Extended Activation Loop Conformation. Small Molecular Approaches for Cellular Reprogramming and Tissue Engineering: Functions as Mediators of the Cell Signaling Pathway. Human CSTF2 RNA Recognition Motif Domain Binds to a U-Rich RNA Sequence through a Multistep Binding Process. Issue Editorial Masthead Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1