A Physiologically Based Pharmacokinetic Model Relates the Subcutaneous Bioavailability of Monoclonal Antibodies to the Saturation of FcRn-Mediated Recycling in Injection-Site-Draining Lymph Nodes.
{"title":"A Physiologically Based Pharmacokinetic Model Relates the Subcutaneous Bioavailability of Monoclonal Antibodies to the Saturation of FcRn-Mediated Recycling in Injection-Site-Draining Lymph Nodes.","authors":"Felix Stader, Cong Liu, Abdallah Derbalah, Hiroshi Momiji, Xian Pan, Iain Gardner, Masoud Jamei, Armin Sepp","doi":"10.3390/antib13030070","DOIUrl":null,"url":null,"abstract":"<p><p>The bioavailability of a monoclonal antibody (mAb) or another therapeutic protein after subcutaneous (SC) dosing is challenging to predict from first principles, even if the impact of injection site physiology and drug properties on mAb bioavailability is generally understood. We used a physiologically based pharmacokinetic model to predict pre-systemic clearance after SC administration mechanistically by incorporating the FcRn salvage pathway in antigen-presenting cells (APCs) in peripheral lymph nodes, draining the injection site. Clinically observed data of the removal rate of IgG from the arm as well as its plasma concentration after SC dosing were mostly predicted within the 95% confidence interval. The bioavailability of IgG was predicted to be 70%, which mechanistically relates to macropinocytosis in the draining lymph nodes and transient local dose-dependent partial saturation of the FcRn receptor in the APCs, resulting in higher catabolism and consequently less drug reaching the systemic circulation. The predicted free FcRn concentration was reduced to 40-45%, reaching the minimum 1-2 days after the SC administration of IgG, and returned to baseline after 8-12 days, depending on the site of injection. The model predicted the uptake into APCs, the binding affinity to FcRn, and the dose to be important factors impacting the bioavailability of a mAb.</p>","PeriodicalId":8188,"journal":{"name":"Antibodies","volume":"13 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348173/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibodies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/antib13030070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The bioavailability of a monoclonal antibody (mAb) or another therapeutic protein after subcutaneous (SC) dosing is challenging to predict from first principles, even if the impact of injection site physiology and drug properties on mAb bioavailability is generally understood. We used a physiologically based pharmacokinetic model to predict pre-systemic clearance after SC administration mechanistically by incorporating the FcRn salvage pathway in antigen-presenting cells (APCs) in peripheral lymph nodes, draining the injection site. Clinically observed data of the removal rate of IgG from the arm as well as its plasma concentration after SC dosing were mostly predicted within the 95% confidence interval. The bioavailability of IgG was predicted to be 70%, which mechanistically relates to macropinocytosis in the draining lymph nodes and transient local dose-dependent partial saturation of the FcRn receptor in the APCs, resulting in higher catabolism and consequently less drug reaching the systemic circulation. The predicted free FcRn concentration was reduced to 40-45%, reaching the minimum 1-2 days after the SC administration of IgG, and returned to baseline after 8-12 days, depending on the site of injection. The model predicted the uptake into APCs, the binding affinity to FcRn, and the dose to be important factors impacting the bioavailability of a mAb.
期刊介绍:
Antibodies (ISSN 2073-4468), an international, peer-reviewed open access journal which provides an advanced forum for studies related to antibodies and antigens. It publishes reviews, research articles, communications and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. Electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material. This journal covers all topics related to antibodies and antigens, topics of interest include (but are not limited to): antibody-producing cells (including B cells), antibody structure and function, antibody-antigen interactions, Fc receptors, antibody manufacturing antibody engineering, antibody therapy, immunoassays, antibody diagnosis, tissue antigens, exogenous antigens, endogenous antigens, autoantigens, monoclonal antibodies, natural antibodies, humoral immune responses, immunoregulatory molecules.